hypre: A Library of High Performance Preconditioners

  • Robert D. Falgout
  • Ulrike Meier Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2331)


hypre is a software library for the solution of large, sparse linear systems on massively parallel computers. Its emphasis is on modern powerful and scalable preconditioners. hypre provides various conceptual interfaces to enable application users to access the library in the way they naturally think about their problems. This paper presents the conceptual interfaces in hypre. An overview of the preconditioners that are available in hypre is given, including some numerical results that show the efficiency of the library.


Elasticity Problem Multigrid Method Linear Solver Lawrence Livermore National Laboratory Sparsity Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ashby, S., Falgout, R.: A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations. Nuclear Science and Engineering 124 (1996) 145–159Google Scholar
  2. 2.
    Brezina, M., Cleary, A., Falgout, R., Henson, V., Jones, J., Manteuffel, T., Mc-Cormick, S, Ruge, J.: Algebraic multigrid based on element interpolation (AMGe). SIAM J. Sci. Comput. 22 (2000) 1570–1592zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brown, P., Falgout, R., Jones, J.: Semicoarsening multigrid on distributed memory machines. SIAM J. Sci. Comput. 21 (2000) 1823–1834zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chow, E.: A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM J. Sci. Comput. 21 (2000) 1804–1822zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chow, E.: Parallel implementation and practical use of sparse approximate inverses with a priori sparsity patterns. Int’l J. High Perf. Comput. Appl. 15 (2001) 56–74CrossRefGoogle Scholar
  6. 6.
    Chow, E.: An unstructured multigrid method based on geometric smoothness. submitted to Num. Lin. Alg. Appl. Also available as Lawrence Livermore National Laboratory technical report UCRL-JC-145075 (2001)Google Scholar
  7. 7.
    Chow, E., Cleary, A., Falgout, R.: Design of the hypre preconditioner library. In Henderson, M., Anderson, C., Lyons, S., eds: Proc. of the SIAM Workshop on Object Oriented Methods for Inter-operable Scientific and Engineering Computing (1998) SIAM PressGoogle Scholar
  8. 8.
    Clay, R. et al.: An annotated reference guide to the Finite Element Interface (FEI) specification, version 1.0. Technical Report SAND99-8229, Sandia National Laboratories, Livermore, CA (1999)Google Scholar
  9. 9.
    Cleary, A., Falgout, R., Henson, V., Jones, J.: Coarse-grid selection for parallel algebraic multigrid. in Proc. of the 5th Intern. Sympos. on Solving Irregularly Structured Problems in Parallel, Lecture Notes in Computer Science 1457 (1998) 104–115CrossRefGoogle Scholar
  10. 10.
    Falgout, R,., Jones, J.: Multigrid on massively parallel architectures. In Dick, E., Riemslagh, K., and Vierendeels, J., eds: Multigrid Methods VI, Lecture Notes in Computational Science and Engineering, vol. 14 (2000) 101–107, Berlin. SpringerGoogle Scholar
  11. 11.
    Gallivan, K., Yang, U. M.: Efficiency issues in parallel coarsening schemes. LLNL technical report (2001)Google Scholar
  12. 12.
    Henson, V. E., Yang, U. M.: BoomerAMG: a parallel algebraic multigrid solver and preconditioner. To appear in Applied Numerical Mathemaitics. Also available as LLNL technical report UCRL-JC-133948 (2000)Google Scholar
  13. 13.
    Henson, V.E., Vassilevski, P.: Element-free AMGe: General algorithms for computing interpolation weights in AMG. to appear in SIAM J. Sci. Comput. Also available as LLNL technical report UCRL-JC-139098Google Scholar
  14. 14.
    Hysom, D., Pothen, A.: Efficient parallel computation of ILU(k) preconditioners. SC99, ACM (1999), CDROM, ISBN #1-58113-091-0, ACM Order #415990, IEEE Computer Society Press Order # RS00197Google Scholar
  15. 15.
    Hysom, D., Pothen, A.: A scalable parallel algorithm for incomplete factor preconditioning. SIAM J. Sci. Comput. 22 (2001) 2194–2215zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jones, M., Plassman, P.; A parallel graph coloring heuristic. SIAM J. Sci. Comput. 14 (1993) 654–669zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Jones, J., Vassilevski, P.: AMGe based on element agglomeration, to appear in SIAM J. Sci. Comput. Also available as LLNL technical report UCRL-JC-135441Google Scholar
  18. 18.
    Karypis, G., Kumar, V.: Parallel threshold-based ILU factorization. Technical Report 061 (1998) University of Minnesota, Department of Computer Science/ Army HPC Research Center, Minneapolis, MNGoogle Scholar
  19. 19.
    Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM J. on Computing 15 (1986) 1036–1053zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    R.uge, J., Stüben, K.: Algebraic Multigrid (AMG). in McCormick, S., ed. Multigrid Methods, Frontiers in Applied Mathematics vol. 3 (1987) 73–130, SIAM, PhiladelphiaGoogle Scholar
  21. 21.
    Schaffer, S.: A semi-coarsening multigrid method for elliptic partial differential equations with highly discontinuous and anisotropic coefficients. SIAM J. Sci. Comput. 20 (1998) 228–242zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Yang, U. M.: On the use of Schwarz smoothing in AMG. 10th Copper Mt. Conf. Multigrid Meth.. Also available as LLNL technical report UCRL-VG-142120 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Robert D. Falgout
    • 1
  • Ulrike Meier Yang
    • 1
  1. 1.Lawrence Livermore National LaboratoryCenter for Applied Scientific ComputingLivermore

Personalised recommendations