Advertisement

Dudeney Dissections of Polygons and Polyhedrons – A Survey –

  • Jin Akiyama
  • Gisaku Nakamura
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2098)

Abstract

Given two polygons (polyhedrons) α and β with the same area (volume), the problem of finding a partition of β into parts that can be reassembled to form β is a promising area of study in geometry. We define a new type of dissection, Dudeney dissection, for polygons and polyhedrons. The dissection imposes two restrictions, one based on the reversal of the perimeter (surface area) and the interior (cross-section) of the polygon (polyhedron), and the other based on the hingeability of parts. In this paper, we survey main results on Dudeney dissections of polygons and polyhedrons.

Keywords

Problem Complexity Computer Graphic Algorithm Analysis Discrete Mathematic Promising Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akiyama, J., Nakamura, G.: A lesson on double packable solids. Teaching Mathematics and Its Applications 18No.1, Oxford Univ. Press (1999) 30–33CrossRefGoogle Scholar
  2. 2.
    Akiyama, J., Nakamura, G.: Dudeney dissection of polygons. Discrete and Computational Geometry (J. Akiyama et al. (eds.), Lecture Notes in Computer Science 1763), Springer-Verlag (2000) 14–29Google Scholar
  3. 3.
    Akiyama, J., Nakamura, G.: Congruent Dudeney dissections of polygons I,-All hinge points are vertices of the polygon-. submitted to Proc. the 9th Quadrennnial International Conference on Graph Theory and Combinatorics, Algorithms and Applications, Discrete Math.Google Scholar
  4. 4.
    Akiyama, J., Nakamura, G.: Congruent Dudeney dissections of polygons II,-All hinge points are on the sides of the polygon-. Proc. Mathematics and Art Conference, Bond University (2000) 115–145Google Scholar
  5. 5.
    Akiyama, J., Nakamura, G.: Congruent Dudeney dissections of polygons III,-Hinge points are on both vertices and sides of a polygon-. (In Japanese) Tech. Reports, Res. Inst. Edu. Develop. Tokai Univ. (June, 2000)Google Scholar
  6. 6.
    Akiyama, J., Nakamura, G.: Dudeney dissections of polyhedrons I,-Space filings solids-. (In Japanese) The Reports of the Res. Inst. of Educ., Tokai Univ. 8 (2000) 1–12MathSciNetGoogle Scholar
  7. 7.
    Akiyama, J., Nakamura, G.: Dudeney dissections of polyhedrons II,-Three layered type-. (In Japanese) The Reports of the Res. Inst. of Educ., Tokai Univ. 8 (2000) 13–26Google Scholar
  8. 8.
    Akiyama, J., Nakamura, G.: Dudeney dissections of polyhedrons III,-Mirror image type-. (In Japanese) The Reports of the Res. Inst. of Educ., Tokai Univ. 8 (2000) 27–35Google Scholar
  9. 9.
    Akiyama, J., Nakamura, G.: Dudeney dissections of polyhedrons IV,-Two layered type-. (In Japanese) The Reports of the Res. Inst. of Educ., Tokai Univ. 8 (2000) 36–57Google Scholar
  10. 10.
    Akiyama, J., Nakamura, G.: Dudeney dissections of polyhedrons V,-Multi layered type-. (In Japanese) The Reports of the Res. Inst. of Educ., Tokai Univ. 8 (2000) 58–62Google Scholar
  11. 11.
    Akiyama, J., Nakamura, G.: Dudeney dissections of polyhedrons VI,-Clasping type-. (In Japanese) The Reports of the Res. Inst. of Educ., Tokai Univ. 8 (2000) 63–66Google Scholar
  12. 12.
    Boltyanski, V. G.: Hilbert’s Third Problem. V. H. Winston & Sons. Translated by R. A. Silverman (1978)Google Scholar
  13. 13.
    Bolyai, F.: Tentamen juventutem. Maros Vasarhelyini: Typis Collegii Reformatorum per Josephum et Simeonem Kali (In Hungarian) (1832)Google Scholar
  14. 14.
    Busschop, P.: Problémes de géométrie. Nouvelle Correoindance Mathématique 2 (1876) 83–84Google Scholar
  15. 15.
    Coxeter, H. S. M.: Introductions to Geometry. Wiley & Sons (1965)Google Scholar
  16. 16.
    Dehn, M.: Über den Rauminhalt. Nachrichten von der Gesellschft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1900) 345–354. Subsequently in Mathematische Annalen 55 (1902) 465—478Google Scholar
  17. 17.
    Dudeney, H. E.: The Canterbury Puzzles. Thomas Nelson & Sons (1907)Google Scholar
  18. 18.
    Frederickson, G. N.: Dissections: Plane & Fancy. Cambridge University Press (1997)Google Scholar
  19. 19.
    Gerwien, P.: Zershneidung jeder beliebigen Anzahl von gleichen geradlinigen Figuren in dieselben Stücke. Jouranl für die reine und angewandteMathematik (Crelle’s Journal) 10 (1833) 228–234 and Taf.IIIzbMATHCrossRefGoogle Scholar
  20. 20.
    Grünbaum, B., Shephard, G. C.: Tiling with congruent tiles. Bull. AMS 3 (1980) 951–973zbMATHCrossRefGoogle Scholar
  21. 21.
    Hilbert, D.: Mathematische Probleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1900). Subsequently in Bulletin of the American Mathematical Society 8 (1901—1902) 437–479MathSciNetCrossRefGoogle Scholar
  22. 22.
    Klarner, D. A.: The Mathematical Gardner. Wadsworth International (1981)Google Scholar
  23. 23.
    Lindgren, H.: Geometric Dissections. D. Van Nostarand Company (1964)Google Scholar
  24. 24.
    Sydler, J.-P.: Conditions nécessaries et suésantes pour l’équivalence des polyédres de l’espace euclidien à trios dimensions. Commentarll Mathematici Helvetica 40 (1965) 43–80zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Wallace, W.: (Ed.) Elements of Geometry (8th ed.). Bell & Bradfute. First six books of Euclid, with a supplement by John Playfair (1831)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Jin Akiyama
    • 1
  • Gisaku Nakamura
    • 1
  1. 1.Research Institute of Educational DevelopmentTokai UniversityTokyoJapan

Personalised recommendations