Interval Sequences: An Object-Relational Approach to Manage Spatial Data

  • Hans-Peter Kriegel
  • Marco Pötke
  • Thomas Seidl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2121)


The design of external index structures for one- and multidimensional extended objects is a long and well studied subject in basic database research. Today, more and more commercial applications rely on spatial datatypes and require a robust and seamless integration of appropriate access methods into reliable database servers. This paper proposes an efficient, dynamic and scalable approach to manage one-dimensional interval sequences within off-the-shelf object-relational database systems. The presented technique perfectly fits to the concept of space-filling curves and, thus, generalizes to spatially extended objects in multidimensional data spaces. Based on the Relational Interval Tree, the method is easily embedded in modern extensible indexing frameworks and significantly outmatches Linear Quadtrees and Relational R-trees with respect to usability, concurrency, and performance. As demonstrated by our experimental evaluation on an Oracle server with real GIS and CAD data, the competing methods are outperformed by factors of up to 4.6 (Linear Quadtree) and 58.3 (Relational R-tree) for query response time.


Geographic Information System Query Processing Access Method Spatial Object Index Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BBKM 99]
    Berchtold S., Böhm C, Kriegel H.-R, Michel U.: Implementation of Multidimensional Index Structures for Knowledge Discovery in Relational Databases. Proc. 1st DaWaK, LNCS 1676, 261–270, 1999.Google Scholar
  2. [BKK 99]
    Böhm C, Klump G., Kriegel H.-R: XZ-Ordering: A Space-Filling Curve for Objects with Spatial Extension. Proc. 6th SSD, LNCS 1651, 75–90, 1999.Google Scholar
  3. [BKP 98]
    Berchtold S., Kriegel H.-R, Pötke M.: Database Support for Concurrent Digital Mock-Up. Proc. IFIP Int. Conf. PROLAMAT, 499–509, 1998.Google Scholar
  4. [BKSS 90]
    Beckmann N., Kriegel H.-R, Schneider R., Seeger B.: TheR *-tree: An Efficient and Robust Access Method for Points and Rectangles. Proc. ACM SIGMOD, 322–331, 1990.Google Scholar
  5. [BSSJ 99]
    Bliujute R., Saltenis S., Slivinskas G., Jensen C.S.: Developing a DataBlade for a New Index. Proc. IEEE 15th ICDE, 314–323, 1999.Google Scholar
  6. [CCF+ 99]
    Chen W., Chow J.-H., Fuh Y.-C, Grandbois J., Jou M., Mattos N., Tran B., Wang Y.: High Level Indexing of User-Defined Types. Proc. 25th VLD), 554–564, 1999.Google Scholar
  7. [Ede 80]
    Edelsbrunner H.: Dynamic Rectangle Intersection Searching Inst. for Information Processing Report 47, Technical University of Graz, Austria, 1980.Google Scholar
  8. [EO85]
    Edelsbrunner H., Overmars M. H.: Batched Dynamic Solutions to Decomposable Searching Problems. Journal of Algorithms, 6(4), 515–542, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [EM 99]
    Eisenberg A., Melton J.: SQL.-1999, formerly known as SQL3. ACM SIGMOD Record, 28(1): 131–138, 1999.CrossRefGoogle Scholar
  10. [ES 93]
    Egenhofer M., Sharma J.: Topological Relations Between Regions in R 2 and Z2. Proc. 3rd SSD, LNCS 692, 316–336, 1993.Google Scholar
  11. [FFS 00]
    Freytag J.-C, Flasza M., Stillger M.: Implementing Geospatial Operations in an Object-Relational Database System. Proc. 12th SSDBM, 2000.Google Scholar
  12. [FJM 97]
    Faloutsos C, Jagadish H. V., Manolopoulos Y.: Analysis of the n-Dimensional Quadtree Decomposition for Arbitrary Hyperrectangles. IEEE TKDE 9(3): 373–383, 1997.Google Scholar
  13. [FR 89]
    Faloutsos C, Roseman S.: Fractals for Secondary Key Retrieval. Proc. ACM PODS, 247–252, 1989.Google Scholar
  14. [FR 91]
    Faloutsos C, Rong Y.: DOT: A Spatial Access Method Using Fractals. Proc. IEEE 7th ICDE, 152–159, 1991.Google Scholar
  15. [Gae 95]
    Gaede V.: Optimal Redundancy in Spatial Database Systems. Proc. 4th SSD, LNCS 951, 96–116, 1995.Google Scholar
  16. [GG 98]
    Gaede V., Günther O.: Multidimensional Access Methods. ACM Computing Surveys 30(2):170–231, 1998.CrossRefGoogle Scholar
  17. [Gun 89]
    Glinther O.: The Design of the Cell Tree: An Object-Oriented Index Structure for Geometric Databases. Proc. IEEE 5th ICDE, 598–605, 1989.Google Scholar
  18. [Gut 84]
    Guttman A.: R-trees: A Dynamic Index Structure for Spatial Searching. Proc. ACM SIGMOD, 47–57, 1984.Google Scholar
  19. [HNP 95]
    Hellerstein J. M., Naughton J. F., Pfeffer A.: Generalized Search Trees for Database Systems. Proc. 21st VLDB, 562–573, 1995.Google Scholar
  20. [IBM 98]
    IBM Corp.: IBM DB2 Spatial Extender Administration Guide and Reference, 2.1.1. Armonk, NY, 1998.Google Scholar
  21. [IBM 99]
    IBM Corp.: IBMDB2 Universal Database Application Development Guide, Vs. 6. Armonk, NY, 1999.Google Scholar
  22. [Inf 98]
    Informix Software, Inc.: DataBlade Developers Kit User’s Guide. Menlo Park, CA, 1998.Google Scholar
  23. [Jag 90]
    Jagadish H. V.: Linear Clustering of Objects with Multiple Attributes. Proc. ACM SIGMOD, 332–342, 1990.Google Scholar
  24. [KB 95]
    Kornacker M., Banks D.: High-Concurrency Locking in R-Trees. Proc. 21st VLDB, 134–145, 1995.Google Scholar
  25. [KF 94]
    Kamel I., Faloutsos C: Hubert R-tree: An Improved R-tree Using Fractals. Proc. ACM SIGMOD, 500–509, 1994.Google Scholar
  26. [KHS 91]
    Kriegel H.-P, Horn H., Schiwietz M.: The Performance of Object Decomposition Techniques for Spatial Query Processing. Proc. 2nd SSD, LNCS 525, 257–276, 1991.Google Scholar
  27. [KMPS 01]
    Kriegel H.-P, Müller A., Pötke M., Seidl T.: Spatial Data Managementfor Computer Aided Design. Proc. ACM SIGMOD, 2001.Google Scholar
  28. [Kor 99]
    Kornacker M.: High-Performance Extensible Indexing. Proc. 25th VLDB, 699–708, 1999.Google Scholar
  29. [KPS00]
    Kriegel H.-P, Pötke M., Seidl T.: Managing Intervals Efficiently in Object-Relational Databases. Proc. 26th VLDB, 407–418, 2000.Google Scholar
  30. [MJFS 96]
    Moon B., Jagadish H. V, Faloutsos C, Saltz J. H.: Analysis of the Clustering Properties of Hilbert Space-filling Curve. Techn. Report CS-TR-3611, University of Maryland, 1996.Google Scholar
  31. [MP94]
    Medeiros C.B., Pires F.: Databases for GIS. ACM SIGMOD Record, 23(1): 107–115, 1994.CrossRefGoogle Scholar
  32. [MPT 99]
    McNeely W. A., Puterbaugh K. D., Troy J. J.: Six Degree-of-Freedom Haptic Rendering Using Voxel Sampling. Proc. ACM SIGGRAPH, 401–408, 1999.Google Scholar
  33. [MTT 00]
    Manolopoulos Y, Theodoridis Y, Tsotras V. J.: Advanced Database Indexing. Boston, MA: Kluwer, 2000.Google Scholar
  34. [ND 97]
    Nascimento M. A., Dunham M. H.: Using Two B+-Trees to Efficiently Process Inclusion Spatial Queries. Proc. 5th Int. Workshop on Advances in Geographic Information Systems (GIS), 5–8, 1997.Google Scholar
  35. [OM 88]
    Orenstein J. A., Manola F. A.: PROBE Spatial Data Modeling and Query Processing in an Image Database Application. IEEE Trans, on Software Engineering, 14(5): 611–629, 1988.CrossRefGoogle Scholar
  36. [Ora 99a]
    Oracle Corp.: Oracle8i Data Cartridge Developer’s Guide, 8.1.6. Redwood City, CA, 1999.Google Scholar
  37. [Ora 99b]
    Oracle Corp.: Oracle Spatial User’s Guide and Reference, 8.1.6. Redwood City, CA, 1999.Google Scholar
  38. [Ore 89]
    Orenstein J. A.: Redundancy in Spatial Databases. Proc. ACM SIGMOD, 294–305, 1989.Google Scholar
  39. [PS 93]
    Preparata F. P., Shamos M. I.: Computational Geometry: An Introduction. Springer, 1993.Google Scholar
  40. [Ram 97]
    Ramaswamy S.: Efficient Indexing for Constraint and Temporal Databases. Proc. 6th ICDT, LNCS 1186, 419–413, 1997.Google Scholar
  41. [RRSB 99]
    Ravi Kanth K. V., Ravada S., Sharma J., Banerjee J.: Indexing Medium-dimensionality Data in Oracle. Proc. ACM SIGMOD, 521–522, 1999.Google Scholar
  42. [RS 99]
    Ravada S., Sharma J.: Oracle8i Spatial: Experiences with Extensible Databases. Proc. 6th SSD, LNCS 1651, 355–359, 1999.Google Scholar
  43. [Sam 90]
    Samet H.: Applications of Spatial Data Structures. Addison-Wesley, Reading, Mass, 1990.Google Scholar
  44. [SFGM 93]
    Stonebraker M., Frew J., Gardels K., Meredith J.: The SEQUOIA 2000 Storage Benchmark. Proc. ACM SIGMOD, 2–11, 1993.Google Scholar
  45. [SK 93]
    Schiwietz M., Kriegel H.-P.: Query Processing of Spatial Objects: Complexity versus Redundancy. Proc. 3rd SSD, LNCS 692, 377–396, 1993.Google Scholar
  46. [SMS+ 00]
    Srinivasan J., Murthy R., Sundara S., Agarwal N., DeFazio S.: Extensible Indexing: A Framework for Integrating Domain-Specific Indexing Schemes into Oracle8i. Proc. IEEE 16th ICDE, 91–100, 2000.Google Scholar
  47. [SRF 87]
    Sellis T., Roussopoulos N., Faloutsos C: The R+-Tree: A Dynamic Index for Multi-Dimensional Objects. Proc. 13th VLDB, 507–518, 1987.Google Scholar
  48. [Sto 86]
    Stonebraker M.: Inclusion of New Types in Relational Data Base Systems. Proc. IEEE 2nd ICDE, 262–269, 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Hans-Peter Kriegel
    • 1
  • Marco Pötke
    • 1
  • Thomas Seidl
    • 1
  1. 1.Institute for Computer ScienceUniversity of MunichMunichGermany

Personalised recommendations