A Simplified and Generalized Treatment of Luby-Rackoff Pseudorandom Permutation Generators

  • Ueli M. Maurer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 658)


A paper by Luby and Rackoff on the construction of pseudorandom permutations from pseudorandom functions based on a design principle of the DES has recently initiated a burst of research activities on applications and generalizations of these results. This paper presents a strongly simplified treatment of these results and generalizes them by pointing out the relation to locally random functions, thereby providing new insight into the relation between probability-theoretic and complexity-theoretic results in cryptography. The first asymptotically-optimal construction of a locally random function is presented and new design strategies for block ciphers based on these results are proposed.


Locally random function Pseudorandom function Pseudorandom permutation Luby-Rackoff permutation generator 


  1. [1]
    N. Alon, O. Goldreich, J. Hastad and R. Peralta, Simple constructions of almost k-wise independent random variables, Proceedings of the 31st IEEE Symposium on Foundations of Computer Science, pp. 544–553, 1990.Google Scholar
  2. [2]
    M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudo-random bits, SIAM Journal on Computing, Vol. 10, pp. 96–113, 1981.CrossRefMathSciNetGoogle Scholar
  3. [3]
    B. Chor and O. Goldreich, On the power of two-point based sampling, Journal of Complexity, Vol. 5, No. 1, pp. 96–106, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    D.E. Denning, Cryptography and Data Security, Addison-Wesley, Reading, MA, 1983.Google Scholar
  5. [5]
    O. Goldreich, S. Goldwasser and S. Micali, How to construct random functions, Journal of the Association for Computing Machinery, Vol. 33, pp. 792–807, 1986.MathSciNetGoogle Scholar
  6. [6]
    A. Joffe, On a set of almost deterministic k-independent random variables, The Annals of Probability, Vol. 2, No. 1, pp. 161–162, 1974.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    H.O. Lancaster, Pairwise statistical independence, Ann. Math. Statist., Vol. 36, pp. 1313–1317, 1965.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    L.A. Levin, One-way functions and pseudorandom generators, Proc. 17th ACM Symposium on Theory of Computing, pp. 363–364, 1985.Google Scholar
  9. [9]
    M. Luby and C. Rackoff, How to construct pseudorandom permutations from pseudorandom functions, SIAM Journal on Computing, Vol. 17, No. 2, pp. 373–386, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    U.M. Maurer and J.L. Massey, Local randomness in pseudo-random sequences, Journal of Cryptology, Vol. 4, No. 2, pp. 135–149, 1991.zbMATHCrossRefGoogle Scholar
  11. [11]
    J. Patarin, Etude des générateurs de permutations basés sur le Schéma du D.E.S., Ph. D. Thesis, INRIA, Domaine de Voluceau, Le Chesnay, France, 1991. An extract appeared in: J. Patarin, New results on pseudorandom permutation generators based on the DES scheme, Advances in Cryptology — CRYPTO’91, J. Feigenbaum (Ed.), Lecture Notes in Computer Science, Vol. 576, Springer-Verlag, pp. 301–312, 1992.Google Scholar
  12. [12]
    J. Pieprzyk, How to construct pseudorandom permutations from single pseudorandom functions, Advances in Cryptology — EUROCRYPT’90, I.B. Damgård (Ed.), Lecture Notes in Computer Science, Vol. 473, Springer-Verlag, pp. 140–150, 1991.Google Scholar
  13. [13]
    C.P. Schnorr, On the construction of random number generators and random function generators, Advances in Cryptology — EUROCRYPT’88, C.G. Günther (Ed.), Lecture Notes in Computer Science, Vol. 330, Springer-Verlag, pp. 225–232, 1988.Google Scholar
  14. [14]
    Y. Zheng, T. Matsumoto and H. Imai, Impossibility and optimality results on constructing pseudorandom permutations, Advances in Cryptology — EUROCRYPT’89, J.-J. Quisquater et al. (Eds.), Lecture Notes in Computer Science, Vol. 434, Springer-Verlag, pp. 412–421, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Ueli M. Maurer
    • 1
  1. 1.Institute for Theoretical Computer ScienceETH ZürichZürichSwitzerland

Personalised recommendations