Dynamics of Vortex and Magnetic Lines in Ideal Hydrodynamics and MHD

  • E.A. Kuznetsov
  • V.P. Ruban
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 536)


Vortexline and magnetic line representations are introduced for description of flows in ideal hydrodynamics and MHD, respectively. For incompressible fluids it is shown that the equations of motion for vorticity and magnetic field with the help of this transformation follow from the variational principle. By means of this representation it is possible to integrate the system of hydrodynamic type with the Hamiltonian H = Ωdr. It is also demonstrated that these representations allow to remove from the noncanonical Poisson brackets, defined on the space of divergence-free vector fields, degeneracy connected with the vorticity frozenness for the Euler equation and with magnetic field frozenness for ideal MHD. For MHD a new Weber type transformation is found. It is shown how this transformation can be obtained from the two-fluid model when electrons and ions can be considered as two independent fluids. The Weber type transformation for ideal MHD gives the whole Lagrangian vector invariant. When this invariant is absent this transformation coincides with the Clebsch representation analog introduced in


Variational Principle Euler Equation Poisson Bracket Vortex Line Lagrangian Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.E. Zakharov and E.A. Kuznetsov, Doklady USSR Ac. Nauk. (Soviet Doklady), 194, 1288 (1970).Google Scholar
  2. 2.
    V.E. Zakharov and E.A. Kuznetsov, Uspekhi fizicheskikh nauk (Physics Uspekhi),167, 1137 (1997).CrossRefGoogle Scholar
  3. 3.
    H. Lamb, Hydrodynamics, Cambridge Univ. Press, 1932.Google Scholar
  4. 4.
    E.A. Kuznetsov, A.V. Mikhailov, Phys. Lett., 77A, 37 (1980).ADSMathSciNetGoogle Scholar
  5. 5.
    J.J. Moreau, C.R.Acad. Sc. Paris, 252, 2810 (1961); H.K.Moffatt, J. Fluid Mech. 35, 117 (1969).zbMATHMathSciNetGoogle Scholar
  6. 6.
    V.I. Arnold, Doklady Ac. Nauk SSSR, 162, 773–777 (1965) (in Russian).Google Scholar
  7. 7.
    V.I. Arnold, Uspekhi matematicheskikh nauk, 24, N3, 225 (1969); Mathematical methods of classical mechanics, Moscow, Nauka, 1974 (in Russian).MathSciNetGoogle Scholar
  8. 8.
    R. Salmon, Ann. Rev. Fluid Mech., 20, 225 (1988).CrossRefADSGoogle Scholar
  9. 9.
    L.D. Landau and E.M. Lifshits, Electrodynamics of continuous media, Moscow, Nauka (1982).Google Scholar
  10. 10.
    M.I. Monastyrskii and P.V. Sasorov, ZhETF (JETP), 93, 1210, (1987).ADSMathSciNetGoogle Scholar
  11. 11.
    V.V. Yan’kov, ZhETF (JETP), 107, 414,(1995).Google Scholar
  12. 12.
    S.S. Moiseev, R.Z. Sagdeev, A,V. Tur, and V.V. Yanovskii, ZhETF (JETP), 83, 215, (1982).MathSciNetGoogle Scholar
  13. 13.
    B.N. Kuvshinov, FIzika Plazmy (Russian Plasma Phys.), 22, 971, (1996).Google Scholar
  14. 14.
    P.J. Morrison and J.M. Greene, Phys. Rev. Lett., 45, 790 (1980)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    R. Hasimoto, J. Fluid Mech., 51, 477 (1972).zbMATHCrossRefADSGoogle Scholar
  16. 16.
    E.A. Kuznetsov and V.P. Ruban, Pis'ma v ZhETF, 67, 1012 (1998) [ JETP Letters, 67, 1076 (1998)].ADSGoogle Scholar
  17. 17.
    M. Rasetti and T. Regge, Physica 80A, 217 (1975).ADSMathSciNetGoogle Scholar
  18. 18.
    G.E. Volovik, V.S. Dotsenko (jun.), Pis'ma ZhETF (JETP Letters), 29, 630 (1979).ADSGoogle Scholar
  19. 19.
    V.E. Zakharov and L.A. Takhtajan, Teor. Mat. Fiz., 38, 26 (1979) (in Russian).Google Scholar
  20. 20.
    V.I. Karpman, Nonlinear waves in dispersive media, Moscow, Nauka, (1973) (in Russian).Google Scholar
  21. 21.
    V.P. Ruban, Magnetic line motion in MHD, Preprint of Landau Institute, JETP, submitted (1999).Google Scholar
  22. 22.
    V.I. Il'gisonis and V.P. Pastukhov, Fizika Plazmy (Russian Plasma Phys.), 22, 228 (1996).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • E.A. Kuznetsov
    • 1
  • V.P. Ruban
    • 1
  1. 1.Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations