Scalability is a key requirement for any KDD and data mining algorithm, and one of the biggest research challenges is to develop methods that allow to use large amounts of data. One possible approach for dealing with huge amounts of data is to take a random sample and do data mining on it, since for many data mining applications approximate answers are acceptable. However, as argued by several researchers, random sampling is difficult to use due to the difficulty of determining an appropriate sample size. In this paper, we take a sequential sampling approach for solving this difficulty, and propose an adaptive sampling algorithm that solves a general problem covering many problems arising in applications of discovery science. The algorithm obtains examples sequentially in an on-line fashion, and it determines from the obtained examples whether it has already seen a large enough number of examples. Thus, sample size is not fixed a priori; instead, it adaptively depends on the situation. Due to this adaptiveness, if we are not in a worst case situation as fortunately happens in many practical applications, then we can solve the problem with a number of examples much smaller than the required in the worst case. For illustrating the generality of our approach, we also describe how different instantiations of it can be applied to scale up knowledge discovery problems that appear in several areas.