Advertisement

Monomial Ideals and Planar Graphs

  • Ezra Miller
  • Bernd Sturmfels
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1719)

Abstract

Gröbner basis theory reduces questions about systems of polynomial equations to the combinatorial study of monomial ideals, or staircases. This article gives an elementary introduction to current research in this area. After reviewing the bivariate case, a new correspondence is established between planar graphs and minimal resolutions of monomial ideals in three variables. A brief guide is given to the literature on complexity issues and monomial ideals in four or more variables.

Keywords

Planar Graph Irreducible Component Hilbert Series Monomial Ideal Free Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Agnarsson. On the number of outside corners of monomial ideals, Journal of Pure and Applied Algebra, 117 (1997) 3–22.CrossRefMathSciNetGoogle Scholar
  2. 2.
    G. Agnarsson, S. Felsner and W. Trotter. The maximum number of edges in a graph of bounded dimension, with applications to ring theory, Discrete Mathematics (201) (1999) 5–19zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    D. Bayer, I. Peeva and B. Sturmfels. Monomial resolutions, Mathematical Research Letters 5 (1998) 31–46.zbMATHMathSciNetGoogle Scholar
  4. 4.
    D. Bayer and M. Stillman. Computation of Hilbert functions, Journal of Symbolic Computation 14 (1992), 31–50.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    D. Bayer and B. Sturmfels. Cellular resolutions of monomial modules. Journal für die reine und angewandte Mathematik, 502 123–140, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    A. Bigatti, M. Caboara and L. Robbiano. On the computation of Hilbert-Poincaré series. Appl. Algebra Engrg. Comm. Comput. 2 (1991), no. 1, 21–33.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    B. Buchberger, A criterion for detecting unnecessary reductions in the construction of Gröbner bases, Proc. EUROSAM 79, Marseille, W. Ng (ed.), Lecture Notes in Computer Science, Vol. 72, Springer 1979, pp. 3–21.Google Scholar
  8. 8.
    M. Caboara, P. Conti and C. Traverso, Yet another ideal decomposition algorithm. Applied algebra, algebraic algorithms and error-correcting codes (Toulouse, 1997), Lecture Notes in Computer Science, Vol. 1255, Springer, 1997, pp. 39–54Google Scholar
  9. 9.
    A. Capani, G. de Dominicis, G. Niesi and L. Robbiano. Computing minimal finite free resolutions, Journal of Pure and Applied Algebra 117/118 (1997), 105–117.CrossRefMathSciNetGoogle Scholar
  10. 10.
    D. Cox, J. Little and D. O’Shea, Ideals, Varieties, and Algorithms, 2nd edition, Springer-Verlag, New York, 1997Google Scholar
  11. 11.
    D. Eisenbud. Introduction to Commutative Algebra with a View towards Algebraic Geometry, Springer Verlag, New York, 1995.Google Scholar
  12. 12.
    V. Gasharov, I. Peeva and V. Welker, The lcm-lattice, preprint, 1998.Google Scholar
  13. 13.
    S. Hosten and W. Morris Jr. The order dimension of the complete graph, Discrete Mathematics (201) (1999), 133–139.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    R. La Scala and M. Stillman. Strategies for computing minimal free resolutions, Journal of Symbolic Computation 26 (1998), no.4, 409–431.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    E. Miller. Alexander duality for monomial ideals and their resolutions, preprint, 1998, math.AG/9812095.Google Scholar
  16. 16.
    H.M. Möller and F. Mora. New constructive methods in classical ideal theory, Journal of Algebra 100 (1986) 138–178.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    W. Trotter. Combinatorics and Partially Ordered Sets. Dimension Theory, The Johns Hopkins University Press, Baltimore, 1992.zbMATHGoogle Scholar
  18. 18.
    S. Yuzvinsky, Taylor and minimal resolutions of homogeneous polynomial ideals, preprint, 1999.Google Scholar
  19. 19.
    G. Ziegler. Lectures on Polytopes, Springer Verlag, New York, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Ezra Miller
    • 1
  • Bernd Sturmfels
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations