Rectangular Codes and Rectangular Algebra

  • V. Sidorenko
  • J. Maucher
  • M. Bossert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1719)


We investigate general properties of rectangular codes. The class of rectangular codes includes all linear, group, and many nongroup codes.We define a basis of a rectangular code. This basis gives a universal description of a rectangular code.

In this paper the rectangular algebra is defined.We show that all bases of a t-rectangular code have the same cardinality. Bounds on the cardinality of a basis of a rectangular code are given.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. R. Kschischang, “The trellis structure of maximal fixed-cost codes,” IEEE Trans. Inform. Theory, vol. 42, Part I, no. 6, pp. 1828–1838, Nov. 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    V. Sidorenko, “The Euler characteristic of the minimal code trellis is maximum,” Problems of Inform. Transm. vol. 33, no. 1, pp. 87–93, January-March. 1997.MathSciNetGoogle Scholar
  3. 3.
    V. Sidorenko, I. Martin, and B. Honary “On the rectangularity of nonlinear block codes,” IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 720–725, March 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Y. Shany and Y. Be’ery, “On the trellis complexity of the Preparata and Goethals codes,” to appear in IEEE Trans. Inform. Theory.Google Scholar
  5. 5.
    A. Vardy and F. R. Kschischang, “Proof of a conjecture of McEliece regarding the optimality of the minimal trellis,” IEEE Trans. Inform. Theory, vol. 42, Part I, no. 6, pp. 2027-1834, Nov. 1996.CrossRefMathSciNetGoogle Scholar
  6. 6.
    R. Lucas, M. Bossert, M. Breitbach, “Iterative soft-decision decoding of linear binary block codes,” in proceedings of IEEE International Symposium on Information Theory and its Applications, pp.811–814, Victoria, Canada, 1996.Google Scholar
  7. 7.
    S. Lin, T. Kasami, T. Fujiwara, and M. Fossorier, “Trellises and trellis-based decoding algorithms for linear block codes,” Boston: Kluwer Academic, 1998.zbMATHGoogle Scholar
  8. 8.
    V. Sidorenko, J. Maucher, and M. Bossert, “On the Theory of Rectangular Codes,” in Proc. of 6th Intern. Workshop on Algebraic and Combinatorial Coding theory, Pskov, Russia, pp.207–210, Sept. 1998.Google Scholar
  9. 9.
    P.M. Cohn, Universal algebra, Harper and Row, New York, N.Y., 1965.zbMATHGoogle Scholar
  10. 10.
    Yu. Sidorenko, “How many words can be generated by a rectangular basis”, preprint (in Russian).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • V. Sidorenko
    • 1
  • J. Maucher
    • 2
  • M. Bossert
    • 2
  1. 1.Institute for Information Transmission ProblemsRussian Academy of ScienceMoscow GSP-4Russia
  2. 2.Dept. of Information TechnologyUniversity of UlmUlmGermany

Personalised recommendations