Some Results on Generalized Concatenation of Block Codes

  • M. Bossert
  • H. Grießer
  • J. Maucher
  • V. V. Zyablov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1719)


We consider generalized concatenation of block codes. First we give a short introduction on the notion for concatenated and errorlocating codes. Then an estimation of the hard decision error correcting capacity of concatenated codes beyond half the minimum distance is presented.


Generalize Concatenation Block Code Error Pattern Parity Check Matrix Coset Representative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. L. Blokh and V. V. Zyablov. Coding of generalized concatenated codes. Problemy Peredachi Infomatsii, 10(3):45–50, July-Sept. 1974.zbMATHGoogle Scholar
  2. 2.
    M. Bossert. Channel Coding for Telecommunications. Wiley, 1999.Google Scholar
  3. 3.
    G. D. Forney, Jr. Concatenated Codes. MIT, Cambridge, MA, 1966.Google Scholar
  4. 4.
    F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North Holland, Amsterdam, 1996.Google Scholar
  5. 5.
    J. K. Wolf. On codes derivable from the tensor product of check matrices. IEEE Trans. Inf. Theory, IT-11:281–284, 1965.CrossRefGoogle Scholar
  6. 6.
    J. K. Wolf and B. Elspas. Error-locating codes-a new concept in error control. IEEE Trans. Inf. Theory, IT-9:113–117, 1963.CrossRefMathSciNetGoogle Scholar
  7. 7.
    V. A. Zinov’ev. Generalized cascade codes. Problemy Peredachi Informatsii, 12(1):5–15, 1976.MathSciNetGoogle Scholar
  8. 8.
    V. A. Zinov’ev and V. V. Zyablov. Decoding of nonlinear generalized cascade codes. Problemy Peredachi Informatsii, 14(2):46–52, 1978.MathSciNetGoogle Scholar
  9. 9.
    V. V. Zyablov. New interpretation of localization error codes, their error correcting capability and algorithms of decoding. In Transmission of Discrete Information over Channels with Clustered errors, pages 8–17. Nauka, Moscow, 1972. (in Russian).Google Scholar
  10. 10.
    V. V. Zyablov, J. Maucher, and M. Bossert. On the equivalence of GCC and GEL codes. In Proc. 6th Int. Workshop on Algebraic and Combinatorial Coding Theory, pages 255–259, Pskov, 1998.Google Scholar
  11. 11.
    V. V. Zyablov, J. Maucher, and M. Bossert. On the equivalence of generalized concatenated codes and generalized error location codes. To appear in IEEE Trans. Inf. Theory, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • M. Bossert
    • 1
  • H. Grießer
    • 1
  • J. Maucher
    • 1
  • V. V. Zyablov
    • 2
  1. 1.Dept. of Information TechnologyUniversity of UlmUlmGermany
  2. 2.Russian Academy of ScienceInstitute for Information Transmission ProblemsMoscow GSP-4Russia

Personalised recommendations