Advertisement

Monotone Expansion of Updates in Logical Databases

  • Michael Dekhtyar
  • Alexander Dikovsky
  • Sergey Dudakov
  • Nicolas Spyratos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1730)

Abstract

To find a minimal real change after an update of a database with integrity constraints (IC) expressed by a generalized logic program with explicit negation is proven to be a Σstackp stack2-complete problem. We define a class of operators expanding the input updates correctly with respect to the IC. The particular monotone expansion operator we describe is incrementally computed in square time. It provides a practical optimization of the standard complete choice algorithm resolving the update problem.

Keywords

Search Space Logic Program Expansion Operator Extended Logic Program Logical Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S.:Updates a new Frontier. In: Proc. of the Second International Conference on the Theory of Databases, ICDT’88. LNCS 326 (1988) 1–18.Google Scholar
  2. 2.
    Alferes, J.J., Pereira, L.M.: Update-Programs Can Update Programs. In J. Dix, L.M. Pereira, T.C. Przymusinski, editors: Second International Workshop, NMELP’96. Selected Papers. LNCS 1216 (1997) 110–131.Google Scholar
  3. 3.
    Bonner, A.J., Kifer, M.: An Overview of Transaction Logic. Theoretical Computer Science, 133(2)(1994), 2-5-265.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Decker H.: An extension of SLD by abduction and integrity maintenance for view updating in deductive databases. In: Proc. of the 1996 International Conference on Logic Programming. MIT Press, (1996), 157–169.Google Scholar
  5. 5.
    Dekhtyar, M., Dikovsky, A., Spyratos, N.: On Conservative Enforced Updates. In: Dix, J., Furbach, U., Nerode, A., editors: Proceedings of 4th International Conference, LPNMR’97. Dagstuhl Castle, Germany, LNCS 1265 (1997) 244–257.Google Scholar
  6. 6.
    Dekhtyar, M., Dikovsky, A., Spyratos, N.: On Logically Justified Updates. In: J. Jaffar, editor: Proc. of the 1998 Joint International Conference and Symposium on Logic Programming. MIT Press, (1998), 250–264.Google Scholar
  7. 7.
    Eiter, T., Gottlob, G.: On the complexity of propositional knowledge base revision, updates, and counterfactuals. Artificial Intelligence 57 (1992) 227–270.CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Eshghi, K., Kowalski, R. A.: Abduction Compared with Negation by Failure. In: Proc. of the 1989 International Conference on Logic Programming. (1989)Google Scholar
  9. 9.
    Guessoum A., Lloyd J.W.: Updating knowledge bases. New Generation Computing, 8 (1990), 71–89.zbMATHCrossRefGoogle Scholar
  10. 10.
    Halfeld Ferrari Alves, M., Laurent, D., Spyratos, N., Stamate, D.: Update rules and revision programs. Rapport de Recherche Universit_e de Paris-Sud, Centre d’Orsay, LRI 1010 (12 / 1995).Google Scholar
  11. 11.
    Kakas A.C., Mancarella P.: Database updates through abduction. IN: Proc. 16th VLBD Conference. (1990) 650–661.Google Scholar
  12. 12.
    Lloyd, J.W., Foundations of Logic Programming. Second, Extended Edition. Springer-Verlag. (1993)Google Scholar
  13. 13.
    Marek, V.W., Truszczyński, M.: Revision programming, database updates and integrity constraints. In: International Conference on Data Base theory, ICDT. LNCS 893 (1995) 368–382.Google Scholar
  14. 14.
    Przymusinski, T.C., Turner, H.: Update by Means of Inference Rules. In: V.W. Marek, A. Nerode, M. Truszczyński, editors, Logic Programming and Nonmonotonic Reasoning. Proc. of the Third Int. Conf. LPNMR’95, Lexington, KY, USA (1995) 166–174.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Michael Dekhtyar
    • 1
    • 4
  • Alexander Dikovsky
    • 2
    • 4
  • Sergey Dudakov
    • 1
    • 4
  • Nicolas Spyratos
    • 3
    • 4
  1. 1.Dept. of CSTver State UnivTverRussia
  2. 2.Universite de NantesNantes cedex 3France
  3. 3.Université de Paris-Sud, LRIOrsay CedexFrance
  4. 4.Keldysh Institute for Applied MathMoscowRussia

Personalised recommendations