Asynchronous Links in the PBC and M-Nets

  • Hanna Klaudel
  • Franck Pommereau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1742)


This paper aims at introducing an extension of M-nets, a fully compositional class of high-level Petri nets, and of its low-level counter part, Petri Boxes Calculus (PBC). We introduce a new operator with nice algebraic properties which allows to express asynchronous com- munications in a simple and flexible way. With this extension, asynchro- nous communications become at least as simple to express as (existing) synchronous ones. Finally, we show how this extension can be used in order to specify systems with timing constraints.


Link Label Basic Synchronization Concurrent Programming Language Full Compositionality Counting Request 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Benzaken, N. Hugon, H. Klaudel, E. Pelz, and R. Riemann. M-net Based Semantics for Triggers. ICPN’98 LNCS Vol. 1420 (1998).Google Scholar
  2. 2.
    E. Best. A Memory Module Specification using Composable High Level Petri Nets. Formal Systems Specification, The RPC-Memory Specification Case Study, LNCS Vol. 1169 (1996).Google Scholar
  3. 3.
    E. Best, R. Devillers, and J. Esparza. General Retinement and Recursion for the Box Calculus. STACS’93. Springer, LNCS Vol. 665, 130–140 (1993).MathSciNetGoogle Scholar
  4. 4.
    E. Best, R. Devillers, and J.G. Hall. The Box Calculus: a New Causal Algebra with Multilabel Communication. APN’92. Springer, LNCS Vol. 609, 21–69 (1992).MathSciNetGoogle Scholar
  5. 5.
    E. Best and H. Fleischhack, editors. PEP: Programming Environment Based on Petri Nets. Number 14/95 in Hildesheimer Informatik-Berichte. Univ. Hildesheim (1995).Google Scholar
  6. 6.
    E. Best, W. Fraczak, R.P. Hopkins, H. Klaudel, and E. Pelz. M-nets: an Algebra of High Level Petri Nets, with an Application to the Semantics of Concurrent Programming Languages. Acta Informatica:35 (1998).Google Scholar
  7. 7.
    E. Best, R.P. Hopkins. B(PN)2 a Basic Petri Net Programming Notation. PARLE’93. Springer, LNCS Vol. 694, 379–390 (1993).Google Scholar
  8. 8.
    R. Devillers and H. Klaudel. Retinement and Recursion in a High Level Petri Box Calculus. STRICT’95. Springer, ViC, 144–159 (1995).Google Scholar
  9. 9.
    R. Devillers, H. Klaudel and R.-C. Riemann. General Retinement for High Level Petri Nets. FST & TCS’97, Springer, LNCS Vol. 1346, 297–311 (1997).Google Scholar
  10. 10.
    R. Durchholz. Causality, time, and deadlines. Data & Knowledge Engineering, 6:496–477 (1991).CrossRefGoogle Scholar
  11. 11.
    H. Fleischhack and B. Grahlmann. A Petri Net Semantics for B(PN)2 with Pro-cedures. Parallel and Distributed Software Engineering, Boston Ma. (1997).Google Scholar
  12. 12.
    H. Klaudel and R.-C. Riemann. Retinement Based Semantics of Parallel Proce-dures. In proceedings of PDPTA’99 (1999).Google Scholar
  13. 13.
    M. Koutny, J. Esparza, E. Best. Operational Semantics for the Petri Box Calculus. CONCUR’94. Springer, LNCS Vol. 836, 210225 (1994).MathSciNetGoogle Scholar
  14. 14.
    J. Lilius and E. Pelz. An M-net Semantics for B(PN)2 with Procedures. ISCIS XI, Antalya, Vol. I, 365–374 (1996).Google Scholar
  15. 15.
    G. Richter. Counting interfaces for discrete time modeling. Technical Report rep-set-1998-26, GMD German National Research Center for Information Technology, SET (1998).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Hanna Klaudel
    • 1
  • Franck Pommereau
    • 1
  1. 1.Université Paris XIICréteilFrance

Personalised recommendations