Almost Bend-Optimal Planar Orthogonal Drawings of Biconnected Degree-3 Planar Graphs in Quadratic Time

  • Ashim Garg
  • Giuseppe Liotta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1731)


Let G be a degree-3 planar biconnected graph with n vertices. Let Opt(G) be the minimum number of bends in any orthogonal planar drawing of G.We show that G admits a planar orthogonal drawing D with at most Opt(G)+3 bends that can constructed in O(n2) time. The fastest known algorithm for constructing a bend-minimum drawing of G has time-complexity O(n5log n) and therefore, we present a significantly faster algorithm that constructs almost bend-optimal drawings.


  1. 1.
    G. Di Battista, G. Liotta, and F. Vargiu. Spirality of orthogonal representations and optimal drawings of series-parallel graphs and 3-planar graphs. In Proc. Workshop Algorithms Data Struct., volume 709 of Lecture Notes Comput. Sci., pages 151–162. Springer-Verlag, 1993.Google Scholar
  2. 2.
    A. Garg and R. Tamassia. On the computational complexity of upward and rectilinear planarity testing. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD’ 94), volume 894 of Lecture Notes Comput. Sci., pages 286–297. Springer-Verlag, 1995.Google Scholar
  3. 3.
    A. Garg and R. Tamassia. A new minimum cost flow algorithm with applications to graph drawing. In S. C. North, editor, Graph Drawing (Proc. GD’ 96), Lecture Notes Comput. Sci. Springer-Verlag, 1997.Google Scholar
  4. 4.
    A. Papakostas and I. G. Tollis. Improved algorithms and bounds for orthogonal drawings. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD’ 94), volume 894 of Lecture Notes Comput. Sci., pages 40–51. Springer-Verlag, 1995.Google Scholar
  5. 5.
    M. S. Rahman, S. Nakano, and T. Nishizeki. A linear algorithm for optimal ortho-gonal drawings of triconnected cubic planar graphs. In G. D. Battista, editor, Graph Drawing (Proc. GD’ 97), volume 1353 of Lecture Notes in Computer Science, pages 99–110. Springer Verlag, 1998.CrossRefGoogle Scholar
  6. 6.
    R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput., 16(3):421–444, 1987.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    R. Tamassia and I. G. Tollis. Planar grid embedding in linear time. IEEE Trans. Circuits Syst., CAS-36(9):1230–1234, 1989.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Ashim Garg
    • 1
  • Giuseppe Liotta
    • 2
  1. 1.Department of Computer Science and EngineeringState University of New York at BuffaloBuffaloUSA
  2. 2.Dipartimento di Ingegneria Elettronica e dell’InformazioneUniversita’ Di PerugiaPerugiaItaly

Personalised recommendations