Infinite Trees and the Future

Extended Abstract
  • Camil Demetrescu
  • 2Giuseppe Di Battista
  • Irene Finocchi
  • Giuseppe Liotta
  • Maurizio Patrignani
  • Maurizio Pizzonia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1731)

Abstract

We study the problem of designing layout facilities for the navigation of an “infinite” graph, i.e. a graph that is so large that its visualization is unfeasible, even by gluing together all the screen snapshots that a user can take during the navigation. We propose a framework for designing layout facilities that support the navigation of an infinite tree. The framework allows to exploit the knowledge of future moves of the user in order to reduce the changes in her mental map during the navigation. Variants of the classical Reingold-Tilford algorithm are presented and their performance is studied both experimentally and analytically.

References

  1. ]1.
    Astra. Mercury international. http://www.merc-int.com/.
  2. 2.
    U. Brandes and D. Wagner. A bayesian paradigm for dynamic graph layout. In G. Di Battista, editor, Graph Drawing (Proc. GD’ 97), volume 1353 of Lecture Notes Comput. Sci., pages 236–247. Springer-Verlag, 1998.Google Scholar
  3. 3.
    R. F. Cohen, G. Di Battista, R. Tamassia, and I. G. Tollis. Dynamic graph drawings: Trees, series-parallel digraphs, and planar ST-digraphs. SIAM J. Comput., 24(5):970–1001, 1995.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    P. Crescenzi, C. Demetrescu, I. Finocchi, and R. Petreschi. Leonardo: a software visualization system. In G. Italiano and S. Orlando, editors, Workshop on Algorithm Engineering, pages 146–155, 1997.Google Scholar
  5. 5.
    G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall, Upper Saddle River, NJ, 1999.MATHCrossRefGoogle Scholar
  6. 6.
    C. A. Duncan, M. Goodrich, and S. Kobourov. Balanced aspect ratio trees and their use for drawing very large graphs. In S. Whitesides,editor, Graph Drawing (Proc. GD’ 98), volume 1547 of Lecture Notes Comput. Sci., pages 384–393. Springer-Verlag, 1999.Google Scholar
  7. 7.
    P. Eades, R. F. Cohen, and M. L. Huang. Online animated graph drawing for web navigation. In G. Di Battista, editor, Graph Drawing (Proc. GD’ 97), volume 1353 of Lecture Notes Comput. Sci., pages 330–335. Springer-Verlag, 1997.Google Scholar
  8. 8.
    P. Eades, W. Lai, K. Misue, and K. Sugiyama. Preserving the mental map of a diagram. In Proceedings of Compugraphics 91, pages 24–33, 1991.Google Scholar
  9. 9.
    T. R. Henry and S. E. Hudson. Viewing large graphs. Technical Report 90-13, Department of Computer Science, University of Arizona, 1990.Google Scholar
  10. 10.
    Hyperbolic Tree. Inxight. http://www.hyperbolictree.com/.
  11. 11.
    K. Kaugars, J. Reinfelds, and A. Brazma. A simple algorithm for drawing large graphs on small screens. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD’ 94), volume 894 of Lecture Notes Comput. Sci., pages 278–281. Springer-Verlag, 1995.Google Scholar
  12. 12.
    D. Kimelman, B. Leban, T. Roth, and D. Zernik. Reduction of visual complexity in dynamic graphs. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD’ 94), volume 894 of Lecture Notes Comput. Sci., pages 218–225. Springer-Verlag, 1995.Google Scholar
  13. 13.
    E. B. Messinger, L. A. Rowe, and R. H. Henry. A divide-and-conquer algorithm for the automatic layout of large directed graphs. IEEE Trans. Syst. Man Cybern., SMC-21(1):1–12, 1991.MathSciNetGoogle Scholar
  14. 14.
    K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the mental map. J. Visual Lang. Comput., 6(2):183–210, 1995.CrossRefGoogle Scholar
  15. 15.
    S. Moen. Drawing dynamic trees. IEEE Softw., 7:21–28, 1990.CrossRefGoogle Scholar
  16. 16.
    T. Munzner. Exploring large graphs in 3d hyperbolic space. Comp. Graphics and its Applications, 8(4):18–23, 1998.CrossRefGoogle Scholar
  17. 17.
    T. Munzner. Drawing large graphs with h3viewer and site manager. In S. Whitesides, editor, Graph Drawing (Proc. GD’ 98), volume 1547 of Lecture Notes Comput. Sci., pages 384–393. Springer-Verlag, 1999.Google Scholar
  18. 18.
    S. North. Incremental layout in DynaDAG. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD’ 95), volume 1027 of Lecture Notes Comput. Sci., pages 409–418. Springer-Verlag, 1996.Google Scholar
  19. 19.
    E. Reingold and J. Tilford. Tidier drawing of trees. IEEE Trans. Softw. Eng., SE-7(2):223–228, 1981.CrossRefGoogle Scholar
  20. 20.
    G. J. Wills. NicheWorks-interactive visualization of very large graphs. In G. Di Battista, editor, Graph Drawing (Proc. GD’ 97), volume 1353 of Lecture Notes Comput. Sci., pages 403–414. Springer-Verlag, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Camil Demetrescu
    • 1
  • 2Giuseppe Di Battista
  • Irene Finocchi
    • 3
  • Giuseppe Liotta
    • 4
  • Maurizio Patrignani
    • 2
  • Maurizio Pizzonia
    • 2
  1. 1.Dipartimento di Informatica e SistemisticaUniversità di Roma “La SapienzaRomaItaly
  2. 2.Dipartimento di Informatica e AutomazioneUniversità di Roma TreRomaItaly
  3. 3.Dipartimento di Scienze dell’InformazioneUniversità di Roma “La SapienzaRomaItaly
  4. 4.Dipartimento di Ingegneria Elettronica e dell’InformazioneUniversità di PerugiaPerugiaItaly

Personalised recommendations