Voronoi Drawings of Trees

  • Giuseppe Liotta
  • Henk Meijer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1731)


This paper investigates the following problem: Given a tree T, can we find a set of points in the plane such that the Voronoi diagram of this set of points is a drawing of T? We study trees that can be drawn as Voronoi diagrams both in the Euclidean and in the Manhattan metric. Characterizations of drawable trees are given and different drawing algorithms that take into account additional geometric constraints are presented.


Binary Tree Voronoi Diagram Delaunay Triangulation Voronoi Region Polygonal Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F. Aurenhammer. Voronoi diagrams: A survey of a fundamental geometric data stru cture. ACM Comput. Surv., 23(3):345–405, Sept. 1991.CrossRefGoogle Scholar
  2. 2.
    G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall, Upper Saddle River, NJ, 1999.zbMATHCrossRefGoogle Scholar
  3. 3.
    G. Di Battista, W. Lenhart, and G. Liotta. Proximity drawability: a survey. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD’ 94), volume 894 of Lecture Notes Comput. Sci., pages 328–339. Springer-Verlag, 1995.Google Scholar
  4. 4.
    M. B. Dillencourt. Realizability of Delaunay triangulations. Inform. Process. Lett., 33(6):283–287, Feb. 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    M. B. Dillencourt. Toughness and Delaunay triangulations. Discrete Comput. Geom., 5:575–601, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M. B. Dillencourt and W. D. Smith. Graph-theoretical conditions for inscribability and Delaunayr ealizability. In Proc. 6th Canad. Conf. Comput. Geom., pages 287–292, 1994.Google Scholar
  7. 7.
    P. Eades and S. Whitesides. The realization problem for Euclidean minimum spanning trees is NP-hard. Algorithmica, 16:60–82, 1996. (special issue on Graph Drawing, edited by G. Di Battista and R. Tamassia).Google Scholar
  8. 8.
    G. Liotta and G. Di Battista. Computing proximity drawings of trees in the 3-dimensional space. In Proc. 4th Workshop Algorithms Data Struct., volume 955 of Lecture Notes Comput. Sci., pages 239–250. Springer-Verlag, 1995.Google Scholar
  9. 9.
    G. Liotta, A. Lubiw, H. Meijer, and S. H. Whitesides. The rectangle of influence drawability problem. Comput. Geom. Theory Appl., 10(1):1–22, 1998.zbMATHMathSciNetGoogle Scholar
  10. 10.
    G. Liotta, R. Tamassia, I. G. Tollis, and P. Vocca. Area requirement of Gabriel drawings. In Algorithms and Complexity (Proc. CIAC’ 97), volume 1203 of Lecture Notes Comput. Sci., pages 135–146. Springer-Verlag, 1997.Google Scholar
  11. 11.
    C. Monma and S. Suri. Transitions in geometric minimum spanning trees. Discrete Comput. Geom., 8:265–293, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, Chichester, UK, 1992.zbMATHGoogle Scholar
  13. 13.
    F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, 3rd edition, 1988.Google Scholar
  14. 14.
    K. Sugihara and M. Iri. Construction of the Voronoi diagram for ‘one million’ generat ors in single-precision arithmetic. Proc. IEEE, 80(9):1471–1484, Sept. 1992.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Giuseppe Liotta
    • 1
  • Henk Meijer
    • 2
  1. 1.Dipartimento di Ingegneria Elettronica e dell’InformazioneUniversità di PerugiaPerugiaItaly
  2. 2.Department of Computing and Information ScienceQueen’s UniversityKingstonCanada

Personalised recommendations