Rectangle of Influence Drawings of Graphs without Filled 3-Cycles

  • Therese Biedl
  • Anna Bretscher
  • Henk Meijer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1731)

Abstract

In this paper, we study rectangle of influence drawings, i.e., drawings of graphs such that for any edge the axis-parallel rectangle defined by the two endpoints of the edge is empty. Specifically, we show that if G is a planar graph without filled 3-cycles, i.e., a planar graph that can be drawn such that the interior of every 3-cycle is empty, then G has a rectangle of influence drawing.

References

  1. 1.
    N. Alon, Z. Füredi, and M. Katchalski. Separating pairs of points by standard boxes. European Journal of Combinatorics, 6:205–210, 1985.MATHMathSciNetGoogle Scholar
  2. 2.
    T. Biedl, G. Kant, and M. Kaufmann. On triangulating planar graphs under the four-connectivity constraint. Algorithmica, 19(4):427–446, 1997.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    J. Bondy and U. Murty. Graph Theory and Applications. Amerian Elsevier Publishing Co., 1976.Google Scholar
  4. 4.
    M. de Berlin, S. Carlsson, and M. Overmars. A general approach to dominance in the plane. Journal of Algorithms, 13:274–296, 1992.CrossRefMathSciNetGoogle Scholar
  5. 5.
    G. Di Battista, W. Lenhart, and G. Liotta. Proximinity drawability: A survey. In R. Tamassia and I. Tollis, editors, DIMACS International Workshop, Graph Drawing 94, volume 894 of Lecture Notes in Computer Science, pages 328–339. Springer-Verlag, 1995.Google Scholar
  6. 6.
    H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinatorica, 10:41–51, 1990.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Ichino and J. Sklansky. The relative neighborhood graph for mixed feature variables. Pattern Recognition, 18(2):161–167, 1985.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    G. Liotta, A. Lubiw, H. Meijer, and S. Whitesides. The Rectangle of Influence drawability problem. Computational Geometry: Theory and Applications, 10(1):1–22, 1998.MATHMathSciNetGoogle Scholar
  9. 9.
    M.H. Overmars and D. Wood. On rectangular visibility. Journal of Algorithms, 9(3):372–390, 1988.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    F. Preparata and M. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Therese Biedl
    • 1
  • Anna Bretscher
    • 2
  • Henk Meijer
    • 2
  1. 1.Department of Computer Science University of WaterlooWaterlooCanada
  2. 2.Department Queen’s UniversityComputing and Information ScienceKingstonCanada

Personalised recommendations