Advertisement

Orthogonal and Quasi-upward Drawings with Vertices of Prescribed Size

Extended Abstract
  • Giuseppe Di Battista
  • Walter Didimo
  • Maurizio Patrignani
  • Maurizio Pizzonia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1731)

Abstract

We consider the problem of computing orthogonal drawings and quasi-upward drawings with vertices of prescribed size. For both types of drawings we present algorithms based on network flow techniques and show that the produced drawings are optimal within a wide class. Further, we present the results of an experimentation conducted on the algorithms that we propose for orthogonal drawings. The experiments show the effectiveness of the approach.

Keywords

Planar Graph Outgoing Edge Vertical Strip Vertical Segment Horizontal Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.Google Scholar
  2. 2.
    C. Batini, E. Nardelli, and R. Tamassia. A layout algorithm for data flow diagrams. IEEE Trans. Softw. Eng., SE-12(4): 538–546, 1986.Google Scholar
  3. 3.
    C. Batini, M. Talamo, and R. Tamassia. Computer aided layout of entity-relationship diagrams. Journal of Systems and Software, 4:163–173, 1984.CrossRefGoogle Scholar
  4. 4.
    P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal drawings with the minimum number of bends. In F. Dehne, A. Rau-Chaplin, J.-R. Sack, and R. Tamassia, editors, Proc. 5th Workshop Algorithms Data Struct., volume 1272 of Lecture Notes Comput. Sci., pages 331–344. Springer-Verlag, 1997.Google Scholar
  5. 5.
    P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal drawings with the minimum number of bends. manuscript, 1998.Google Scholar
  6. 6.
    P. Bertolazzi, G. Di Battista, and W. Didimo. Quasi-upward planarity. In S. H. Whitesides, editor, Graph Drawing (Proc. GD’ 98), volume 1547 of Lecture Notes Comput. Sci., pages 15–29. Springer-Verlag, 1998.Google Scholar
  7. 7.
    T. Biedl and G. Kant. A better heuristic for orthogonal graph drawings. Comput. Geom. Theory Appl., 9:159–180, 1998.MATHMathSciNetGoogle Scholar
  8. 8.
    T. C. Biedl. Relating bends and size in orthogonal graph drawings. Inform. Process. Lett., 65:111–115, 1998.CrossRefMathSciNetGoogle Scholar
  9. 9.
    G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall, Upper Saddle River, NJ, 1999.MATHCrossRefGoogle Scholar
  10. 10.
    G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An experimental comparison of four graph drawing algorithms. Comput. Geom. Theory Appl., 7:303–325, 1997.MATHGoogle Scholar
  11. 11.
    S. Even. Graph Algorithms. Computer Science Press, Potomac, Maryland, 1979.MATHGoogle Scholar
  12. 12.
    U. Fömeier, C. Hess, and M. Kaufmann. On improving orthogonal drawings: The 4M-algorithm. In S. Whitesides, editor, Graph Drawing (Proc. GD’ 98), volume 1547 of Lecture Notes Comput. Sci., pages 125–137. Springer-Verlag, 1999.Google Scholar
  13. 13.
    U. Fömeier and M. Kaufmann. Drawing high degree graphs with low bend numbers. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD’ 95), volume 1027 of Lecture Notes Comput. Sci., pages 254–266. Springer-Verlag, 1996.Google Scholar
  14. 14.
    U. Fömeier and M. Kaufmann. Algorithms and area bounds for nonplanar orthogonal drawings. In G. Di Battista, editor, Graph Drawing (Proc. GD’ 97), volume 1353 of Lecture Notes Comput. Sci., pages 134–145. Springer-Verlag, 1997.Google Scholar
  15. 15.
    T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. Wiley-Teubner, 1990.Google Scholar
  16. 16.
    T. Nishizeki and N. Chiba. Planar graphs: Theory and algorithms. Ann. Discrete Math., 32, 1988.Google Scholar
  17. 17.
    A. Papakostas and I. G. Tollis. Algorithms for area-efficient orthogonal drawings. Comput. Geom. Theory Appl., 9(1-2):83–110, 1998. Special Issue on Geometric Representations of Graphs, G. Di Battista and R. Tamassia, editors.Google Scholar
  18. 18.
    J. M. Six, K. G. Kakoulis, and I. G. Tollis. Refinement of orthogonal graph drawings. In S. Whitesides, editor, Graph Drawing (Proc. GD’ 98), volume 1547 of Lecture Notes Comput. Sci., pages 302–315. Springer-Verlag, 1999.Google Scholar
  19. 19.
    R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput., 16(3):421–444, 1987.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man Cybern., SMC-18(1):61–79, 1988.CrossRefGoogle Scholar
  21. 21.
    L. Valiant. Universality considerations in VLSI circuits. IEEE Trans. Comput., C-30(2):135–140, 1981.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Giuseppe Di Battista
    • 1
  • Walter Didimo
    • 1
  • Maurizio Patrignani
    • 1
  • Maurizio Pizzonia
    • 1
  1. 1.Dipartimento di Informatica e AutomazioneUniversità di Roma TreRomeItaly

Personalised recommendations