An Heuristic for Graph Symmetry Detection

  • Hubert de Fraysseix
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1731)

Abstract

We give a short introduction to an heuristic to find automorphisms in a graph such as axial, central or rotational symmetries. Using techniques of factorial analysis, we embed the graph in an Euclidean space and try to detect and interpret the geometric symmetries of of the embedded graph. It has been particularly developed to detect axial symmetries.

References

  1. [1]
    J. P. Benzécri and et al, L’analyse des données — Tome II: l’analyse des correspondances, Dunod, Paris, 1973.Google Scholar
  2. [2]
    M. Capobianco, Examples and counterexamples in graph theory, Elsevier, North Holland, New-York, 1978.MATHGoogle Scholar
  3. [3]
    C.N.R.S. (ed.), L’analyse factorielle et ses applications, Paris, 1956.Google Scholar
  4. [4]
    D. G. Corneil and C.C. Gotlieb, An efficient algorithm for graph isomorphism, Journal of the ACM 17 (1970), no. 1, 51–64.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    H. de Fraysseix and P. Ossona de Mendez, Discovering automorphisms using abstract distances, Tech. report, KAM-DIMATIA Series, 1999, (in preparation).Google Scholar
  6. [6]
    H. de Fraysseix and Kuntz P., Pagination of large scale networks, Algorithms review 2 (1992), no. 3, 105–112.Google Scholar
  7. [7]
    I.S. Filotti and J.N. Mayer, A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus (working paper), Conference Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing (Los Angele, California), 1980, pp. 236–243.Google Scholar
  8. [8]
    S. L. Hakimi and S.S. Yau, Distance matrix of a graph and its realizability, Quaterly of Applied Mathematics 22 (1964), 305–317.MathSciNetGoogle Scholar
  9. [9]
    S-H. Hong, P. Eades, and S-H. Lee, Finding planar geometric automorphisms in planar graphs, ISAAC 98 (ed. Chwa and Ibarra ), Springer Lecture Notes in Computer Science 1533 (1998), 277–286.Google Scholar
  10. [10]
    S-H. Hong, P. Eades, and S-H. Lee, Drawing series parallel digraphs symmetrically (to appear).Google Scholar
  11. [11]
    J. E. Hopcroft and J.K. Wong, Linear time algorithm for isomorphism of planar graphs (preliminary report), Conference Record of Sixth Annual ACM Symposium on Theory of Computing (Seattle, Washington), 1974, pp. 172–184.Google Scholar
  12. [12]
    J. B. Kruskal and J.B. Seery, Designing network diagrams, Proceedings of the First General Conference on Social Graphics, 1978, pp. 22–50.Google Scholar
  13. [13]
    P. Kuntz, Representation euclidienne d’un graphe en vue de sa segmentation, Ph.D. thesis, Ecole des Hautes Etudes en Sciences Sociales, Paris, 1992.Google Scholar
  14. [14]
    G. S. Lueker and S.B. Kellogg, A linear time algorithm for deciding interval graph isomorphism, Journal of the ACM 26 (1979), no. 2, 183–195.MATHCrossRefGoogle Scholar
  15. [15]
    J. Manning, Geometric symmetry in graphs, Ph.D. thesis, Purdue University, New York, 1990.Google Scholar
  16. [16]
    J. Manning and M.J. Atallah,Fast detection and display of symmetry in trees, Congressus Numerantium 64 (1988), 159–169.MathSciNetGoogle Scholar
  17. [17]
    Fast detection and display of symmetry in outerplanar graphs, Discrete Applied Mathematics 39 (1992), 13–35.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    G. L. Miller, Isomorphism testing for graphs of bounded genus, Conference Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing (Los Angeles, California), 1980, pp. 225–235.Google Scholar
  19. [19]
    Isomorphism of graphs which are pairwise k-separable, Information and Control 56 (1983), no. 1/2, 21–33.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    Isomorphism of k-contractible graphs. a generalization of bounded valence and bounded genus, Information and Control 56 (1983), no. 1/2, 1–20.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Hubert de Fraysseix
    • 1
  1. 1.CNRS UMR 8557 E.H.E.S.S.ParisFrance

Personalised recommendations