Turn-Regularity and Planar Orthogonal Drawings

Extended Abstract
  • Stina S. Bridgeman
  • Giuseppe Di Battista
  • Walter Didimo
  • Giuseppe Liotta
  • Roberto Tamassia
  • Luca Vismara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1731)

Abstract

Given an orthogonal representation H with n vertices and bends, we study the problem of computing a planar orthogonal drawing of H with small area. This problem has direct applications to the development of practical graph drawing techniques for information visualization and VLSI layout. In this paper, we introduce the concept of turn-regularity of an orthogonal representation H, provide combinatorial characterizations of it, and show that if H is turn-regular (i.e., all its faces are turn-regular), then a planar orthogonal drawing of H with minimum area can be computed in O(n) time, and a planar orthogonal drawing of H with minimum area and minimum total edge length within that area can be computed in O(n7=4log n) time. We also apply our theoretical results to the design and implementation of new practical heuristic methods for constructing planar orthogonal drawings. An experimental study conducted on a test suite of orthogonal representations of randomly generated biconnected 4-planar graphs shows that the percentage of turn-regular faces is quite high and that our heuristic drawing methods perform better than previous ones.

References

  1. [1]
    P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal drawings with the minimum number of bends. In F. Dehne, A. Rau-Chaplin, J.-R. Sack, and R. Tamassia, editors, Algorithms and Data Structures (Proc. WADS’ 97), volume 1272 of Lecture Notes Comput. Sci., pages 331–344. Springer-Verlag, 1997.Google Scholar
  2. [2]
    P. Bertolazzi, G. Di Battista, G. Liotta, and C. Mannino. Upward drawings of triconnected digraphs. Algorithmica, 6(12):476–497, 1994.CrossRefGoogle Scholar
  3. [3]
    T. C. Biedl. New lower bounds for orthogonal graph drawings. In F. J. Bran-denburg, editor, Graph Drawing (Proc. GD’ 95), volume 1027 of Lecture Notes Comput. Sci., pages 28–39. Springer-Verlag, 1996.Google Scholar
  4. [4]
    T. C. Biedl and G. Kant. A better heuristic for orthogonal graph drawings. Comput. Geom. Theory Appl., 9(3):159–180, 1998.MATHMathSciNetGoogle Scholar
  5. [5]
    J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. North-Holland, Amsterdam, The Netherlands, 1976.Google Scholar
  6. [6]
    G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall, Upper Saddle River, NJ, 1999.MATHCrossRefGoogle Scholar
  7. [7]
    G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An experimental comparison of four graph drawing algorithms. Comput. Geom. Theory Appl., 7(5-6):303–325, 1997.MATHGoogle Scholar
  8. [8]
    G. Di Battista and G. Liotta. Upward planarity checking: “Faces are more than polygons”. In S. H. Whitesides, editor, Graph Drawing (Proc. GD’ 98), volume 1547 of Lecture Notes Comput. Sci., pages 72–86. Springer-Verlag, 1998.Google Scholar
  9. [9]
    G. Di Battista, G. Liotta, and F. Vargiu. Spirality and optimal orthogonal drawings. SIAM J. Comput., 27(6):1764–1811, 1998.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic digraphs. Theoret. Comput. Sci.,61(2,3):175–198, 1988.CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    W. Didimo and G. Liotta. Computing orthogonal drawings in a variable embedding setting. In K.-Y. Chwa and O. H. Ibarra, editors, Algorithms and Computation (Proc. ISAAC’ 98), volume 1533 of Lecture Notes Comput. Sci., pages 79–88. Springer-Verlag, 1998.Google Scholar
  12. [12]
    U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low bend numbers. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD’ 95), volume 1027 of Lecture Notes Comput. Sci., pages 254–266. Springer-Verlag, 1996.Google Scholar
  13. [13]
    A. Garg and R. Tamassia. Planar drawings and angular resolution: Algorithms and bounds. In J. van Leeuwen, editor, Algorithms (Proc. ESA’ 94), volume 855 of Lecture Notes Comput. Sci., pages 12–23. Springer-Verlag, 1994. 26 S.S. Bridgeman et al.Google Scholar
  14. [14]
    A. Garg and R. Tamassia. On the computational complexity of upward and rectilinear planarity testing. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD’ 94), volume 894 of Lecture Notes Comput. Sci., pages 286–297. Springer-Verlag, 1995.Google Scholar
  15. [15]
    A. Garg and R. Tamassia. A new minimum cost flow algorithm with applications to graph drawing. In S. North, editor, Graph Drawing (Proc. GD’ 96), volume 1190 of Lecture Notes Comput. Sci., pages 201–216. Springer-Verlag, 1997.Google Scholar
  16. [16]
    N. Gelfand and R. Tamassia. Algorithmic patterns for orthogonal graph drawing. In S. H. Whitesides, editor, Graph Drawing (Proc. GD’ 98), volume 1547 of Lecture Notes Comput. Sci., pages 138–152. Springer-Verlag, 1998.Google Scholar
  17. [17]
    F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1969.Google Scholar
  18. [18]
    F. Hoffmann and K. Kriegel. Embedding rectilinear graphs in linear time. Inform. Process. Lett., 29(2):75–79, 1988.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    M. Y. Hsueh and D. O. Pederson. Computer-aided layout of lsi circuit building-blocks. In Proc. IEEE Internat. Symp. Circuits and Systems, 1979.Google Scholar
  20. [20]
    G. W. Klau and P. Mutzel. Optimal compaction of orthogonal grid drawings. In G. Cornuejols, R. E. Burkard, and G. J. Woeginger, editors, Integer Programming and Combinatorial Optimization (Proc. IPCO’ 99), volume 1610 of Lecture Notes Comput. Sci., pages 304–319. Springer-Verlag, 1999.Google Scholar
  21. [21]
    T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. B. G. Teubner-John Wiley & Sons, Stuttgart, Germany-Chichester, England, 1990.MATHGoogle Scholar
  22. [22]
    R. H. J. M. Otten and J. G. van Wijk. Graph representations in interactive layout design. In Proc. IEEE Internat. Sympos. Circuits and Systems, pages 914–918, 1978.Google Scholar
  23. [23]
    A. Papakostas and I. G. Tollis. Algorithms for area-efficient orthogonal drawings. Comput. Geom. Theory Appl., 9(1-2):83–110, 1998. Special Issue on Geometric Representations of Graphs, G. Di Battista and R. Tamassia, editors.Google Scholar
  24. [24]
    M. Patrignani. On the complexity of orthogonal compaction. In F. Dehne, A. Gupta, J.-R. Sack, and R. Tamassia, editors, Algorithms and Data Structures (Proc. WADS’ 99), volume 1663 of Lecture Notes Comput. Sci., pages 56–61. Springer-Verlag, 1999.Google Scholar
  25. [25]
    J. M. Six, K. G. Kakoulis, and I. G. Tollis. Refinement of orthogonal graph drawings. In S. H. Whitesides, editor, Graph Drawing (Proc. GD’ 98), volume 1547 of Lecture Notes Comput. Sci., pages 302–315. Springer-Verlag, 1998.Google Scholar
  26. [26]
    L. Stockmeyer. Optimal orientation of cells in slicing floorplan design. Inform. Control, 57(2/3):91–101, 1983.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput., 16(3):421–444, 1987.MATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    R. Tamassia and I. G. Tollis. Planar grid embedding in linear time. IEEE Trans. Circuits Syst., CAS-36(9):1230–1234, 1989.CrossRefMathSciNetGoogle Scholar
  29. [29]
    R. Tamassia, I. G. Tollis, and J. S. Vitter. Lower bounds for planar orthogonal drawings of graphs. Inform. Process. Lett., 39(1):35–40, 1991.MATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    G. Vijayan and A. Wigderson. Rectilinear graphs and their embeddings. SIAM J. Comput., 14(2):355–372, 1985.MATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    W. Wimer, I. Koren, and I. Cederbaum. Floorplans, planar graphs and layouts. IEEE Trans. Circuits Syst., CAS-35(3):267–278, 1988.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Stina S. Bridgeman
    • 1
  • Giuseppe Di Battista
    • 2
  • Walter Didimo
    • 2
  • Giuseppe Liotta
    • 3
  • Roberto Tamassia
    • 1
  • Luca Vismara
    • 1
  1. 1.Department of Computer ScienceCenter for Geometric ComputingProvidence
  2. 2.Dipartimento di Informatica e AutomazioneUniversità degli Studi di Roma TreRomaItaly
  3. 3.Dipartimento di Ingegneria Elettronica e dell’InformazioneUniversità degli Studi di PerugiaPerugiaItaly

Personalised recommendations