Graph Embedding with Topological Cycle-Constraints

  • Christoph Dornheim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1731)


This paper concerns graph embedding under topological constraints. We address the problem of finding a planar embedding of a graph satisfying a set of constraints between its vertices and cycles that require embedding a given vertex inside its corresponding cycle. This problem turns out to be NP-complete. However, towards an analysis of its tractable subproblems, we develop an efficient algorithm for the special case where graphs are 2-connected and any two distinct cycles in the constraints have at most one vertex in common.


  1. 1.
    J. A. Bondy, U.S.R. Murty: Graph Theory with Applications, MacMillan, 1976Google Scholar
  2. 2.
    G. Demoucron, Y. Malgrange, R. Pertuiset: Graphes planaires: reconnaissance et construction de représentations planaires topologiques, Revue Française de Recherche Opérationelle, 8: 33–47, 1964Google Scholar
  3. 3.
    R. Diestel: Graph Theory, Springer, 1997Google Scholar
  4. 4.
    M. R. Garey, D. S. Johnson: Computers and Intractability-A Guide to the Theory of NP-Completeness, Freeman, 1979Google Scholar
  5. 5.
    W. He, K. Marriott: Constrained graph layout, in S. North (ed.), Graph Drawing, Proceedings of GD’96, LNCS 1190, 217–232, 1997Google Scholar
  6. 6.
    M. M. Syslo: An efficient cycle vector space algorithm for listing all cycles of a planar graph, SIAM Journal on Computing, 10,4: 797–808, 1981MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    R. Tamassia: Constraints in graph drawing algorithms, Constraints, 3: 87–120, 1998MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    C. Thomassen: Planarity and duality of finite and infinite graphs, Journal of Combinatorial Theory, Series B, 29: 244–271, 1980MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Christoph Dornheim
    • 1
  1. 1.Institut für Informatik Albert-Ludwigs-UniversitätFreiburgGermany

Personalised recommendations