Grid Drawings of Four-Connected Plane Graphs

  • Kazuyuki Miura
  • Shin-ichi Nakano
  • Takao Nishizeki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1731)


A grid drawing of a plane graph G is a drawing of G on the plane so that all vertices of G are put on plane grid points and all edges are drawn as straight line segments between their endpoints without any edge-intersection. In this paper we give a very simple algorithm to find a grid drawing of any given 4-connected plane graph G with four or more vertices on the outer face. The algorithm takes time O(n) and needs a rectangular grid of width ⌈n/2⌉-1 and height ⌈n/2⌉ if G has n vertices. The algorithm is best possible in the sense that there are an infinite number of 4-connected plane graphs any grid drawings of which need rectangular grids of width ⌈n/2⌉ - 1 and height ⌈n/⌉e.


  1. 1.
    G. Di Battista, P. Eades, R. Tamassia and I. G. Tollis, Automatic graph drawing: an annotated bibliography, Computational Geometry: Theory and Applications, 4, 235–282 (1994).MATHMathSciNetGoogle Scholar
  2. 2.
    G. Di Battista, P. Eades, R. Tamassia and I. G. Tollis, Graph Drawing, Prentice Hall, NJ (1998).Google Scholar
  3. 3.
    M. Chrobak and G. Kant, Convex grid drawings of 3-connected planar graphs, International Journal of Computational Geometry and Applications, 7, 211–223 (1997).CrossRefMathSciNetGoogle Scholar
  4. 4.
    M. Chrobak and S. Nakano, Minimum-width grid drawings of plane graphs, Computational Geometry: Theory and Applications, 10, 29–54 (1998).MathSciNetGoogle Scholar
  5. 5.
    N. Chiba, K. Onoguchi and T. Nishizeki, Drawing planar graphs nicely, Acta Informatica, 22, 187–201 (1985).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M. Chrobak and T. Payne, A linear-time algorithm for drawing planar graphs on a grid, Information Processing Letters, 54, 241–246 (1995).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    N. Chiba, T. Yamanouchi and T. Nishizeki, Linear algorithms for convex drawings of planar graphs, in Progress in Graph Theory, J. A. Bondy and U. S. R. Murty (eds.), Academic Press, 153–173 (1984).Google Scholar
  8. 8.
    I. Fáry, On straight lines representation of plane graphs, Acta. Sci. Math. Szeged, 11, 229–233 (1948).Google Scholar
  9. 9.
    H. de Fraysseix, J. Pach and R. Pollack, How to draw a planar graph on a grid, Combinatorica, 10, 41–51 (1990).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    X. He, Grid embedding of 4-connected plane graphs, Discrete & Computational Geometry, 17, 339–358 (1997).Google Scholar
  11. 11.
    G. Kant, Drawing planar graphs using the canonical ordering, Algorithmica, 16, 4–32 (1996).MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    G. Kant and X. He, Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems, Theoretical Computer Science, 172, 175–193 (1997).MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    W. Schnyder, Embedding planar graphs on the grid, Proc. 1st Annual ACM-SIAM Symp. on Discrete Algorithms, San Francisco, 138–148 (1990).Google Scholar
  14. 14.
    S. K. Stein, Convex maps, Proc. Amer. Math. Soc., 2, 464–466 (1951).MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    W.T. Tutte, How to draw a graph, Proc. London Math. Soc., 13, 743–768 (1963).MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    K. Wagner, Bemerkungen zum vierfarbenproblem, Jahresbericht der Deutschen Mathematiker-Vereinigung, 46, 26–32 (1936).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Kazuyuki Miura
    • 1
  • Shin-ichi Nakano
    • 2
  • Takao Nishizeki
    • 1
  1. 1.Graduate School of Information SciencesTohoku University Aoba-yama 05SendaiJapan
  2. 2.Department of Computer ScienceFaculty of Engineering Gunma UniversityKiryu GunmaJapan

Personalised recommendations