Advertisement

Graph Planarity and Related Topics

  • Robin Thomas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1731)

Abstract

This compendium is the result of reformatting and minor editing of the author’s transparencies for his talk delivered at the conference. The talk covered Euler’s Formula, Kuratowski’s Theorem, linear planarity tests, Schnyder’s Theorem and drawing on the grid, the two paths problem, Pfaffian orientations, linkless embeddings, and the Four Color Theorem.

Keywords

Bipartite Graph Planar Graph Disjoint Path Connected Plane Graph Vector Cross Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N. Alon, P. D. Seymour and R. Thomas, A separator theorem for non-planar graphs, J. Amer. Math. Soc. 3 (1990), 801–808.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    N. Alon, P. D. Seymour and R. Thomas, Planar separators, SIAM J. Disc. Math. 7(1994), 184–193.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    K. Appel and W. Haken, Every planar map is four colorable, Part I: discharging, Illinois J. of Math. 21 (1977), 429–490.MATHMathSciNetGoogle Scholar
  4. 4.
    K. Appel, W. Haken and J. Koch, Every planar map is four colorable, Part II: reducibility, Illinois J. of Math. 21 (1977), 491–567.MATHMathSciNetGoogle Scholar
  5. 5.
    K. Appel and W. Haken, Every planar map is four colorable, Contemp. Math. 98 (1989).Google Scholar
  6. 6.
    D. Bar-Natan, Lie algebras and the four color theorem, Combinatorica 17 (1997), 43–52.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    K. S. Booth and G. S. Luecker, Testing the consecutive ones property, interval graphs and graph planarity using PQ-tree algorithms, J. Comput. Syst. Sci. 13 (1976), 335–379.MATHGoogle Scholar
  8. 8.
    J. Boyer and W. Myrvold, Stop minding your P’s and Q’s: A simplified O(n) planar embedding algorithm, Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (1999), 140–146.Google Scholar
  9. 9.
    R. A. Brualdi and B. L. Shader, Matrices of sign-solvable linear systems, Cambridge Tracts in Mathematics 116 (1995).Google Scholar
  10. 10.
    Y. Colin de Verdière, Sur un nouvel invariant des graphes et un critère de planarité, J. Combin. Theory Ser. B 50, (1990), 11–21.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    I. Fáry, On straight line representations of planar graphs, Acta Univ. Szeged. Sect. Sci. Math. 11 (1948), 229–233.MathSciNetGoogle Scholar
  12. 12.
    H. de Fraysseix, J. Pach and R. Pollack, How to draw a graph on a grid, Combinatorica 10 (1990), 41–51.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    J. E. Hopcroft and R. E. Tarjan, Efficient planarity testing, J. Assoc. Comput. Mach. 21 (1974), 549–568.MATHMathSciNetGoogle Scholar
  14. 14.
    L. H. Kauffman, Map coloring and the vector cross product, J. Combin. Theory Ser. B 48 (1990), 145–154.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    L. H. Kauffman and R. Thomas, Temperley-Lieb algebras and the Four-Color Theorem, manuscript.Google Scholar
  16. 16.
    P. W. Kasteleyn, Dimer statistics and phase transitions, J. Math. Phys. 4 (1963), 287–293.CrossRefMathSciNetGoogle Scholar
  17. 17.
    P. W. Kasteleyn, Graph theory and crystal physics, in Graph Theory and Theoretical Physics (ed. F. Harary), Academic Press, New York, 1967, 43–110.Google Scholar
  18. 18.
    V. Klee, R. Ladner and R. Manber,Sign-solvability revisited, Linear Algebra Appl. 59 (1984), 131–158.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    A. Lempel, S. Even and I. Cederbaum, An algorithm for planarity testing of graphs, In: Theory of Graphs, P. Rosenstiehl ed., Gordon and Breach, New York, 1967, 215–232.Google Scholar
  20. 20.
    R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math. 36 (1979), 177–189.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    L. Lovász and A. Schrijver, A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs, Proc. Amer. Math. Soc. 126 (1998), 1275–1285.CrossRefMathSciNetGoogle Scholar
  22. 22.
    Y. Matiyasevich, The Four Colour Theorem as a possible corollary of binomial summation, manuscript.Google Scholar
  23. 23.
    W. McCuaig, Pólya’s permanent problem, manuscript (81 pages), June 1997.Google Scholar
  24. 24.
    G. Pólya, Aufgabe 424, Arch. Math. Phys. Ser. 20 (1913), 271.Google Scholar
  25. 25.
    N. Robertson, D. P. Sanders, P. D. Seymour and R. Thomas, The four-colour theorem, J. Combin. Theory Ser. B 70 (1997), 2–44.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    N. Robertson and P. D. Seymour, Graph Minors XIII. The disjoint paths problem, J. Combin. Theory Ser. B 63 (1995), 65–110.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    N. Robertson and P. D. Seymour, Graph Minors XX. Wagner’s conjecture, manuscript.Google Scholar
  28. 28.
    N. Robertson, P. D. Seymour and R. Thomas, Sach’s linkless embedding conjecture, J. Combin. Theory Ser. B 64 (1995), 185–227.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    N. Robertson, P. D. Seymour and R. Thomas, Permanents, Pfaffian orientations, and even directed circuits, manuscript.Google Scholar
  30. 30.
    T. L. Saaty, Thirteen colorful variations on Guthrie’s four-color conjecture, Am. Math. Monthly 79 (1972), 2–43.MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    W. Schnyder, Planar graphs and poset dimension, Order 5 (1991), 323–343.CrossRefMathSciNetGoogle Scholar
  32. 32.
    P. D. Seymour, On the two-colouring of hypergraphs, Quart. J. Math. Oxford 25 (1974), 303–312.MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    P. D. Seymour, Disjoint paths in graphs, Discrete Math.29 (1980), 293–309.MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    P. D. Seymour and C. Thomassen, Characterization of even directed graphs, J. Combin. Theory Ser. B 42 (1987), 36–45.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Y. Shiloach, A polynomial solution to the undirected two paths problem, J. Assoc. Comp. Machinery, 27, (1980), 445–456.MATHMathSciNetGoogle Scholar
  36. 36.
    W.-K. Shih and W.-L. Hsu, A new planarity test, Theoret. Comp. Sci. 223 (1999), 179–191.MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    R. Thomas, Planarity in linear time, unpublished class notes, available from http://www.math.gatech.edu/~thomas/planarity.ps.
  38. 38.
    R. Thomas, An update on the Four-Color Theorem, Notices Amer. Math. Soc. 45 (1998), 848–859.MATHMathSciNetGoogle Scholar
  39. 39.
    C. Thomassen, 2-linked graphs, Europ. J. Combinatorics 1 (1980), 371–378.MATHMathSciNetGoogle Scholar
  40. 40.
    C. Thomassen, Kuratowski’s theorem, J. Graph Theory 5 (1981), 225–241.MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    C. Thomassen, Even cycles in directed graphs, European J. Combin. 6 (1985), 85–89.MATHMathSciNetGoogle Scholar
  42. 42.
    C. Thomassen, Sign-nonsingular matrices and even cycles in directed graphs, Linear Algebra and Appl. 75 (1986), 27–41.MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    C. Thomassen, The even cycle problem for directed graphs, J. Amer. Math. Soc. 5 (1992), 217–229.MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    V. V. Vazirani and M. Yannakakis, Pfaffian orientations, 0-1 permanents, and even cycles in directed graphs, Discrete Appl. Math. 25 (1989), 179–190.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Robin Thomas
    • 1
  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaGeorgia

Personalised recommendations