Advertisement

Statistics of Knots and Entangled Random Walks

  • S. Nechaev
Conference paper
Part of the Les Houches - Ecole d’Ete de Physique Theorique book series (LHSUMMER, volume 69)

Abstract

The lectures review the state of affairs in modern branch of mathematical physics called probabilistic topology. In particular we consider the following problems: (i) we estimate the probability of a trivial knot formation on the lattice using the Kauffman algebraic invariants and show the connection of this problem with the thermodynamic properties of 2D disordered Potts model; (ii) we investigate the limit behavior of random walks in multi-connected spaces and on non-commutative groups related to the knot theory. We discuss the application of the above mentioned problems in statistical physics of polymer chains. On the basis of non-commutative probability theory we derive some new results in statistical physics of entangled polymer chains which unite rigorous mathematical facts with more intuitive physical arguments.

Keywords

Partition Function Random Walk Braid Group Cayley Tree Topological State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Vologodskii A.V. and Frank-Kamenetskii M.D., Usp. Fiz. Nauk 134 (1981) 641 (in Russian); Vologodskii A.V., Lukashin A.V., Frank-Kamenetskii M.D. and Anshelevich V.V., Zh. Exp. Teor. Fiz. 66 (1974) 2153; Vologodskii A.V., Lukashin A.V. and Frank-Kamenetskii M.D., Zh. Exp. Teor. Fiz. 67 (1974) 1875; Frank-Kamenetskii M.D., Lukashin A.V. and Vologodskii A.V., Nature 258 (1975) 398.CrossRefMathSciNetGoogle Scholar
  2. [2]
    Wilsceck F., Fractional Statistics and Anyon Superconductivity (Singapore: WSPC, 1990).Google Scholar
  3. [3]
    Majid S., Int. J. Mod. Phys. A 8 (1993) 4521.CrossRefADSzbMATHMathSciNetGoogle Scholar
  4. [4]
    Gómez C. and Sierra G. J. Math. Phys. 34 (1993) 2119.CrossRefADSzbMATHMathSciNetGoogle Scholar
  5. [5]
    Jones V.F.R., Pacific J. Math. 137 (1989) 311; Likorish W.B.R., Bull. London Math. Soc. 20 (1988) 558; Wadati M., Deguchi T.K. and Akutsu Y., Phys. Rep. 180 (1989) 247.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    Integrable Models and Strings Lect. Not. Phys. 436 (Springer: Heidelberg, 1994); Kauffman L.H., AMS Contemp. Math. Ser. 78 (1989) 263.Google Scholar
  7. [7]
    Kauffman L.H., Topology 26 (1987) 395.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    Vassiliev V.A., Complements of Discriminants of Smooth Maps: Topology and Applications Math. Monographs 98 (Trans. AMS, 1992); Bar-Natan D., preprint Harvard, 1992.Google Scholar
  9. [9]
    Edwards S.F., Proc. Roy. Soc. 91 (1967) 513.CrossRefADSzbMATHGoogle Scholar
  10. [10]
    Yor M., J. Appl. Prob. 29 (1992) 202; Math. Finance 3 (1993) 231.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    Comtet A., Desbois J. and Monthus C., J. Stat. Phys. 73 (1993) 433; Desbois J., J. Phys. A 25 (1992) L-195, L-755; Desbois J. and Comtet A., J. Phys. A 25 (1992) 3097.CrossRefADSzbMATHMathSciNetGoogle Scholar
  12. [12]
    Wiegel F., Introduction to Path-Integrals Methods in Physics and Polymer Science (Singapore: WSPC, 1986).CrossRefGoogle Scholar
  13. [13]
    Khandekar D.S. and Wiegel F., J. Phys. A 21 (1988) L–563; J. Phys. France 50 (1989) 2205.CrossRefMathSciNetGoogle Scholar
  14. [14]
    Hofstadter D., Phys. Rev. B 14 2239 (1976); Guillement J., Helffer B. and Treton P., J. Phys. France 50 (1989) 2019.CrossRefADSGoogle Scholar
  15. [15]
    Wiegmann P.B. and Zabrodin A.V., Phys. Rev. Lett. 72 (1994) 1890; Nucl. Phys. B 422 [FS] (1994) 495.CrossRefADSGoogle Scholar
  16. [16]
    Bellissard J., Lect. Notes Phys. 257 (1986) 99.CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    Dubrovin B.A., Novikov S.P. and Fomenko A.T., Modern Geometry (Moscow: Nauka, 1979).Google Scholar
  18. [18]
    Wu F.Y., Rev. Mod. Phys. 54 (1982) 235.CrossRefADSGoogle Scholar
  19. [19]
    Baxter R.J., Exactly Solvable Models in Statistical Mechanics (London: Academic Press, 1982).Google Scholar
  20. [20]
    Mezard M., Parisi G. and Virasoro M., Spin Glass Theory and Beyond (Singapore: WSPC, 1987).Google Scholar
  21. [21]
    Lifshits I.M., Gredeskul S.A. and Pastur L.A., Introduction to the theory of disordered systems (Moscow: Nauka, 1982).Google Scholar
  22. [22]
    Reidemeister K., Knotentheorie (Barlin: Springer, 1932).Google Scholar
  23. [23]
    Kauffman L.H., Knots and Physics (Singapore: WSPC, 1991).zbMATHGoogle Scholar
  24. [24]
    Grosberg A. Yu and Nechaev S., J. Phys. A 25 (1992) 4659.CrossRefADSzbMATHMathSciNetGoogle Scholar
  25. [25]
    Wu F.Y., J. Knot Theory Ramific. 1 (1992) 32.CrossRefGoogle Scholar
  26. [26]
    Grosberg A. Yu and Nechaev S., Europhys. Lett. 20 (1992) 613.CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    Duplantier B. and David F., J. Stat. Phys. 51 (1988) 327.CrossRefADSzbMATHMathSciNetGoogle Scholar
  28. [28]
    Edwards S.F. and Anderson P.W., J. Phys. F 5 (1975) 965.CrossRefADSGoogle Scholar
  29. [29]
    Cwilich G. and Kirkpatrick T.R., J. Phys. A 22 (1989) 4971.CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    De Santis E., Parisi G. and Ritort F., preprint: cond-mat/9410093.Google Scholar
  31. [31]
    Gross D.J., Kanter I. and Sompolinsky H., Phys. Rev. Lett. 55 (1985) 304.CrossRefADSGoogle Scholar
  32. [32]
    Bellissard J. and Simon B., J. Funct. Anal. 48 (1982) 408.CrossRefzbMATHMathSciNetGoogle Scholar
  33. [33]
    Gutzwiller M., Chaos in Classical and Quantum Mechanics (Heidelberg: Springer, 1990).CrossRefzbMATHGoogle Scholar
  34. [34]
    Terras A., Harmonic Analysis on Symmetric Spaces and Applications (Berlin: Springer, 1979).Google Scholar
  35. [35]
    Hejhal D., The Selberg Trace Formula for PSL(2, R) Lect. Notes Math. 548 (Berlin: Springer, 1976); 1001 (Berlin: Springer, 1983).Google Scholar
  36. [36]
    Chassaing P., Letac G. and Mora M., Prob. Measures Groups Lect. Not. Math. 1064 (1983).Google Scholar
  37. [37]
    Nechaev S.K., Statistics of Knots and Entangled Random Walks (Singapore: WSPC, 1996).CrossRefzbMATHGoogle Scholar
  38. [38]
    Lerda A., Anyons Lect. Notes Phys. 14 (Barlin: Springer, 1992).Google Scholar
  39. [39]
    Fürstenberg H., Trans. Am. Math. Soc 198 (1963) 377; Tutubalin V., Prob. Theor. Appl. (in Russian) 10 (1965) 15.CrossRefGoogle Scholar
  40. [40]
    Nechaev S. and Sinai Ya, Bol. Sci. Bras. Mat. 21 (1991) 121.CrossRefzbMATHMathSciNetGoogle Scholar
  41. [41]
    Koralov L., Nechaev S. and Sinai Ya, Prob. Theor. Appl. 38 (1993) 331.zbMATHMathSciNetGoogle Scholar
  42. [42]
    Mirlin A. and Fyodorov Y., J. Phys. A 24 (1991) 227; Fyodorov Y., Basic Features of Efetov’s supersymmetry approach Mesoscopic Quantum Physics, Les Houches, session LXI, 1994 (Amsterdam: Elsevier, 1995).CrossRefGoogle Scholar
  43. [43]
    Khokhlov A. and Nechaev S., Phys. Lett. A 112 (1985) 156; Nechaev S., Semenov A. and Koleva M., Physica A 140 (1987) 506.CrossRefADSMathSciNetGoogle Scholar
  44. [44]
    Nechaev S. and Vershik A., J. Phys. A 27 (1994) 2289.CrossRefADSzbMATHMathSciNetGoogle Scholar
  45. [45]
    Monastyrsky M. and Nechaev S., Mod. Phys. Lett. A (1997).Google Scholar
  46. [46]
    Nechaev S., Grosberg A. Yu and Vershik A.M., J. Phys. A 29 (1996) 2411.CrossRefADSzbMATHMathSciNetGoogle Scholar
  47. [47]
    Kesten H., Trans. Amer. Math. Soc. 92 (1959) 336.CrossRefzbMATHMathSciNetGoogle Scholar
  48. [48]
    Vershik A.M., Topics in Algebra 26, pt. 2 (1990) 467 (Warszawa: Banach Center Publication, PWN Publ.); Proc. Am. Math. Soc. 148 (1991) 1.MathSciNetGoogle Scholar
  49. [49]
    Helfand E. and Pearson D.S., J. Chem. Phys. 79 (1983) 2054; Rubinstein M. and Helfand E., J. Chem. Phys. 82 (1985) 2477.CrossRefADSGoogle Scholar
  50. [50]
    Cates M.E. and Deutsch J.M., J. Phys. France 47 (1986) 2121.CrossRefGoogle Scholar
  51. [51]
    Vershik A.M., private communication.Google Scholar
  52. [52]
    Desbois J. and Nechaev S., J. Stat. Phys. 88 (1997) 201.CrossRefADSzbMATHMathSciNetGoogle Scholar
  53. [53]
    Comtet A. and Nechaev S., J. Phys. A 31 (1998) 2767.CrossRefADSMathSciNetGoogle Scholar
  54. [54]
    Desbois J. and Nechaev S., J. Phys. A 31 (1998) 5609.CrossRefADSMathSciNetGoogle Scholar
  55. [55]
    Jones W.F.R., Bull. Am. Math. Soc. 12 (1985) 103.CrossRefzbMATHGoogle Scholar
  56. [56]
    Vershik A.M. and Kerov S., Dokl. Ac. Nauk SSSR 301 (1988) 777 (in Russian).Google Scholar
  57. [57]
    Kauffman L.H. and Saleur H., Comm. Math. Phys. 141 (1991) 293.CrossRefADSzbMATHMathSciNetGoogle Scholar
  58. [58]
    Akutsu Y. and Deguchi T.K., Phys. Rev. Lett. 67 (1991) 777; Akutsu Y. and Wadati M., J. Phys. Soc. Jpn. 56 (1987).CrossRefADSzbMATHMathSciNetGoogle Scholar
  59. [59]
    Birman J., Knots, Links and Mapping Class Groups Ann. Math. Stud. 82 (Princeton: Princeton Univ. Press, NJ, 1976).Google Scholar
  60. [60]
    Mumford M., Tata Lectures on Theta, I, II Progress in Mathematics 28, 34 (Boston, MA: Birkhauser, 1983).CrossRefGoogle Scholar
  61. [61]
    Letchikov, Russian Math. Surv. 51 (1996) 49.CrossRefADSzbMATHMathSciNetGoogle Scholar
  62. [62]
    Zinn-Justin J., Quantum Field Theory and Critical Phenomena (Oxford: Clarendon, 1989).Google Scholar
  63. [63]
    Gerzenshtein M.E. and Vasiljev V.B., Prob. Theor. Appl. 4 (1959) 424 (in Russian); Karpelevich F.I. and Tutubalin V.N. and Shour M.G., Prob. Theor. Appl. 4 (1959) 432 (in Russian).Google Scholar
  64. [64]
    Polyakov A.M., Mod. Phys. Lett. A 3 (1988) 325; Witten E., Comm. Math. Phys. 121 (1989) 351.CrossRefADSMathSciNetGoogle Scholar
  65. [65]
    Belavin A.A., Polyakov A.M. and Zamolodchikov A.B., Nucl. Phys. B 241 (1984) 333.CrossRefADSzbMATHMathSciNetGoogle Scholar
  66. [66]
    Nechaev S.K., J. Phys. A 21 (1988) 3659.CrossRefADSzbMATHMathSciNetGoogle Scholar
  67. [67]
    Ito K. and McKean H.P., Diffusion Processes and Their Sample Paths (Berlin: Springer, 1965).CrossRefzbMATHGoogle Scholar
  68. [68]
    Golubev V.V., Lectures on analytic theory of differential equations (Moscow: GITTL, 1950); Venkov A.B., preprint LOMI P/2/86.zbMATHGoogle Scholar
  69. [69]
    Dotsenko Vl.S., Nucl. Phys. B 235 [FS11] (1984) 54.CrossRefADSMathSciNetGoogle Scholar
  70. [70]
    Knizhnik V.G. and Zamolodchikov A.B., Nucl. Phys. B 247 (1984) 83.CrossRefADSzbMATHMathSciNetGoogle Scholar
  71. [71]
    Guadarini E., Martinelli M. and Mintchev M., CERN-TH preprints 5419/89, 5420/89, 5479/89.Google Scholar
  72. [72]
    Chandrassekharan K., Elliptic Functions (Berlin: Springer, 1985).CrossRefGoogle Scholar
  73. [73]
    Grosberg A.Yu and Khokhlov A.R., Statistical physics of macromolecules (Moscow: Nauka, 1993).Google Scholar
  74. [74]
    Koralov L.B., Nechaev S.K. and Sinai Ya G., Chaos 1 (1991) 131.CrossRefADSzbMATHMathSciNetGoogle Scholar
  75. [75]
    Gutin A.M., Grosberg A.Yu and Shakhnovich E.I., Macromolecules 26 (1993) 1293.CrossRefADSMathSciNetGoogle Scholar
  76. [76]
    De Gennes P.G., Scaling Concepts in Polymer Physics (Ithaca: Cornell Univ. Press, 1979).Google Scholar
  77. [77]
    Kholodenko A., private communications.Google Scholar
  78. [78]
    Lifshits I.M., Grosberg A.Yu and Khokhlov A.R., Rev. Mod. Phys. 50 (1978) 683.CrossRefADSGoogle Scholar
  79. [79]
    Grosberg A.Yu, Nechaev S.K. and Shakhnovich E.I., J. Phys. France 49 (1988) 2095.CrossRefGoogle Scholar
  80. [80]
    Chu B., Ying Q. and Grosberg A., Macromolecules 28 (1995) 180.CrossRefADSGoogle Scholar
  81. [81]
    Grosberg A., Rabin Y., Havlin S. and Neer A., Europhys. Lett. 23 (1993) 373; Grosberg A., Rabin Y., Havlin S. and Neer A., Biofizika 38 (1993) 75.CrossRefADSGoogle Scholar
  82. [82]
    Ma J., Straub J.E. and Shakhnovich E.I., J. Chem. Phys. 103 (1995) 2615.CrossRefADSGoogle Scholar
  83. [83]
    Grosberg A.Yu and Nechaev S.K., Macromolecules 24 (1991) 2789.CrossRefADSGoogle Scholar
  84. [84]
    Khokhlov A.R. and Nechaev S.K., J. Phys. II France 6 (1996) 1547.CrossRefGoogle Scholar
  85. [85]
    Nachlis W.L., Kambour R.P. and McKnight W.J., Abstracts of the 35th IUPAC Congress 2 796; Nachlis W.L., Kambour R.P. and McKnight W.J., Polymer 39 (1994) 3643.Google Scholar
  86. [86]
    Mishels J.P. and Wiegel F.W., Proc. Roy. Soc. A 403 (1986) 269.CrossRefADSGoogle Scholar
  87. [87]
    Koniaris K. and Muthukumar M., Phys. Rev. Lett. 66 (1991) 2211.CrossRefADSGoogle Scholar
  88. [88]
    Tsurusaki K. and Deguchi T., J. Phys. Soc. Jpn. 64 (1995) 1506; Deguchi T. and Tsurusaki K., J. Knot Theory Ramific. 3 (1994) 321.CrossRefADSGoogle Scholar
  89. [89]
    Klenin K.V., Vologodskii A.V., Anshelevich V.V. and Dykhne A.M., J. Biomol. Struct. Dyn. 5 (1988) 1173.CrossRefGoogle Scholar
  90. [90]
    Van Rensburg E.J. and Whittington S.G., J. Phys. A 23 (1990) 3573; Le Bret M., Biopolymers 19 (1980) 619.CrossRefADSzbMATHMathSciNetGoogle Scholar
  91. [91]
    Fixmann M., J. Chem. Phys. 36 (1962) 306.CrossRefADSGoogle Scholar
  92. [92]
    Lifshits I.M. and Grosberg A.Yu, Zh. Exp. Teor. Fiz. 65 (1973) 2399.Google Scholar
  93. [93]
    Grosberg A.Yu and Nechaev S.K., Adv. Polym. Sci. 106 (1993) 1.CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag 1999

Authors and Affiliations

  • S. Nechaev
    • 1
    • 2
  1. 1.L D Landau Institute for Theoretical PhysicsMoscowRussia
  2. 2.UMR 8626, CNRS-Université Paris XI, LPTMS, bâtiment 100Université Paris SudOrsay CedexFrance

Personalised recommendations