On Interactions of Cardinality Constraints, Key, and Functional Dependencies

  • Sven Hartmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1762)


Cardinality constraints as well as key dependencies and functional dependencies are among the most popular classes of constraints in database models. While the formal properties of each of the constraint classes are now well understood, little is known about their interaction. The objective of this paper is to discuss how constraints from these classes go together. We propose methods for reasoning about a set of cardinality constraints, key and certain functional dependencies. Moreover, we construct Armstrong databases for these constraints, which are of special interest for example-based deduction in database design.


Functional Dependency Integrity Constraint Relationship Type Component Type Database Schema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.W. Armstrong, Dependency structures of database relationship, Information Processing 74 (1974) 580–583.MathSciNetGoogle Scholar
  2. 2.
    C. Beeri, M. Dowd, R. Fagin and R. Statman, On the structure of Armstrong relations for functional dependencies, J. ACM 31 (1984) 30–46.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    J. Biskup, R. Menzel, T. Polle and Y. Sagiv, Decomposition of relationships through pivoting, in: B. Thalheim (ed.), Conceptual Modeling (Springer, Berlin, 1996) 28–41.CrossRefGoogle Scholar
  4. 4.
    P.P. Chen, The Entity-Relationship Model: Towards a unified view of data, ACM Trans. Database Syst. 1 (1984) 9–36.CrossRefGoogle Scholar
  5. 5.
    E.F. Codd, A relation model of data for large shared data banks, Commun. ACM 13 (1970) 377–387.MATHCrossRefGoogle Scholar
  6. 6.
    C. Delobel and R.G. Casey, Decompositions of a database and the theory of Boolean switching functions, IBM J. Res. Dev. 17 (1973) 374–386.MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    J. Demetrovics, Z. Füredi and G.O.H. Katona, Minimum matrix representation of closure operations, Discrete Appl. Math. 11 (1985) 115–128.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    J. Demetrovics and V.D. Thi, Some results about functional dependencies, Acta Cybern. 8 (1988) 273–278.MathSciNetGoogle Scholar
  9. 9.
    A. Hajnal and E. Szemeredi, Proof of a conjecture of Erdős, in: P. Erdős, A. Renyi and V.T. Sos (eds.), Combinatorial theory and its applications, Colloq. Math. Soc. Jáanos Bolyai 4 (North-Holland, Amsterdam, 1970) 601–623.Google Scholar
  10. 10.
    S. Hartmann, Graph-theoretic methods to construct entity-relationship databases, in: M. Nagl (ed.), Graph-theoretic concepts in computer science, LNCS 1017 (Springer, Berlin, 1995) 131–145.Google Scholar
  11. 11.
    S. Hartmann, On the consistency of int-cardinality constraints, in: T.W. Ling, S. Ram and M.L. Lee (eds.), Conceptual Modeling, LNCS 1507 (Springer, Berlin, 1998) 150–163.Google Scholar
  12. 12.
    D. Jungnickel, T. Beth and H. Lenz, Design Theory (BI, Mannheim, 1985).MATHGoogle Scholar
  13. 13.
    M. Lenzerini and P. Nobili, On the satisfiability of dependency constraints in Entity-Relationship schemata, Inf. Syst. 15 (1990) 453–461.CrossRefGoogle Scholar
  14. 14.
    S.W. Liddle, D.W. Embley and S.N. Woodfield, Cardinality constraints in semantic data models, Data Knowl. Eng. 11 (1993) 235–270.MATHCrossRefGoogle Scholar
  15. 15.
    D. Maier, The theory of relational databases (Computer Science Press, Rockville, 1983).MATHGoogle Scholar
  16. 16.
    H. Mannila and K. Räihä, Design by example: an application of Armstrong relations, J. Comput. Syst. Sci. 33 (1986) 126–141.MATHCrossRefGoogle Scholar
  17. 17.
    J. Paredaens, P. De Bra, M. Gyssens and D. Van Gucht, The structure of the relational database model (Springer, Berlin, 1989).MATHGoogle Scholar
  18. 18.
    B. Thalheim, Dependencies in Relational Databases (Teubner, Stuttgart, 1991).MATHGoogle Scholar
  19. 19.
    B. Thalheim, Foundations of Entity-Relationship Modeling, Ann. Math. Artif. Intell. 6 (1992) 197–256.MathSciNetGoogle Scholar
  20. 20.
    B. Thalheim, Fundamentals of cardinality constraints, in: G. Pernul and A.M. Tjoa (eds.), Entity-relationship approach, LNCS 645 (Springer, Berlin, 1992) 7–23.Google Scholar
  21. 21.
    D. Theodorates, Deductive object oriented schemas, in: B. Thalheim (ed.), Conceptual modeling, LNCS 1157 (Springer, Berlin, 1996) 58–72.CrossRefGoogle Scholar
  22. 22.
    G.E. Weddell, Reasoning about functional dependencies generalized for semantic data models, ACM Trans. Database Syst. 17 (1992) 32–64.CrossRefMathSciNetGoogle Scholar
  23. 23.
    J. Wijsen, J. Vandenbulcke and H. Olivie, Functional dependencies generalized for temporal databases, in: R. Elmasri, V. Kouramajian and B. Thalheim (eds.), Entity-Relationship approach, LNCS 823 (Springer, Berlin, 1994) 99–109.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Sven Hartmann
    • 1
  1. 1.FB MathematikUniversität RostockRostockGermany

Personalised recommendations