Assessment of Shear-Induced Structures by Real Space and Fourier Microscopy

  • R. Biehl
  • T. Palberg
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 115)


We report preliminary measurements of the shear-induced sliding layer structure in an aqueous suspension of highly charged polystyrene spheres. Particle interaction was controlled by advanced conditioning procedures to result in fluid or body-centred cubic equilibrium structures. Shear was applied in an optical plate-plate shear cell of variable slit width. Fourier microscopy yielded complementary information to real space analysis. The accessible range of scattering vectors was (3.5 ≤ k ≤ 7.2) μm−1 We checked the experimental performance by recording the form factor of a non-interacting suspension and structure factors of less dilute suspensions in dependence on electrolyte concentration c. For deionized suspensions of particle number densities of n = 0.34 µm−3 we observed crystallisation. Shearing this sample we obtained two-dimensional structure factors which are compatible with sliding layer formation. The observed quantitative discrepancies to the theoretical model calculations are discussed.

Key words

Colloidal suspensions Shear-induced structure Microscopy Light scattering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pusey PN (1991) In: Hansen JP, Levesque D, Zinn-Justin J (eds) Liquids, freezing and glass transition (51st summer school in theoretical physics, Les Houches, France, 1989). Elsevier, Amsterdam, pp 763–942Google Scholar
  2. 2.
    Bartlett P, van Megen W (1994) In: Mehta A. (ed) Granular matter. Springer, New York, Berlin Heidelberg, pp 195–257Google Scholar
  3. 3.
    Palberg T (1999) J Phys Condens Matter 11:R323CrossRefGoogle Scholar
  4. 4.
    Okubo T (1994) In: Schmitz KS (ed) Macro-Ion Characterization: From dilute solutions to complex fluids (ACS symposium series 548) American Chemical Society, Washington, p 364–380Google Scholar
  5. 5.
    Elliot MS, Bristol BTF, Poon WCK (1997) Physica A 235:216CrossRefGoogle Scholar
  6. 6.
    Dux C, Versmold H (1997) Phys Rev Lett 78:1811CrossRefGoogle Scholar
  7. 7.
    Maaroufi MR, Stipp A, Palberg T (1998) Prog Colloid Polym Sci 108:83CrossRefGoogle Scholar
  8. 8.
    van Megen W (1995) Transport Theory Stat Phys 24:1017CrossRefGoogle Scholar
  9. 9.
    Crocker JC, Grier DG (1998) MRS Bull 23: 24; Murray C (1998) MRS Bull 23:33; van Blaaderen A (1998) MRS Bull 23:39; Asher SA, Holtz J, Weismann J, Pan G (1998) MRS Bull 23:44Google Scholar
  10. 10.
    Ackerson BJ (1983) Physica A 128:221CrossRefGoogle Scholar
  11. 11.
    Loose W, Ackerson BJ (1994) J Chem Phys 101:7211CrossRefGoogle Scholar
  12. 12.
    Laun HM, Bung R, Hess S, Loose W, Hess O, Hahn K, Hädicke E, Hingmann R, Schmidt F, Lindner P (1993) J Rheol 36:1057Google Scholar
  13. 13.
    Buttler S, Harrowell P (1995) Phys Rev E 52:6424CrossRefGoogle Scholar
  14. 14.
    Stevens MJ, Robbins MO (1993) Phys Rev E 48:3778CrossRefGoogle Scholar
  15. 15.
    Garbow N, Müller J, Schätzel K, Palberg T (1997) Physica A 235:291CrossRefGoogle Scholar
  16. 16.
    Evers M, Garbow N, Hessinger D, Palberg T (1998) Phys Rev E 57:6774CrossRefGoogle Scholar
  17. 17.
    Hessinger D, Evers M, Palberg T (1999) Phys Rev E (in press)Google Scholar
  18. 18.
    D’Aguanno B, Klein R (1991) J Chem Soc Faraday Trans 87:379CrossRefGoogle Scholar
  19. 19.
    Dux Ch, Musa S, Reus V, Versmold H, Schwahn D, Lindner (1998) P J Chem Phys 109:2556Google Scholar
  20. 20.
    Neser S, Bechinger C, Leiderer P, Palberg T (1997) Phys Rev Lett 79:2348CrossRefGoogle Scholar
  21. 21.
    Palberg T, Streicher K (1994) Nature 367:51–54CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • R. Biehl
    • 1
  • T. Palberg
    • 1
  1. 1.Institut für Physik der Universität MainzMainzGermany

Personalised recommendations