Advertisement

Linear Cellular Automata with Multiple State Variables

  • Jarkko Kari
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1770)

Abstract

We investigate a finite state analog of subband coding, based on linear Cellular Automata with multiple state variables. We show that such a CA is injective (surjective) if and only if the determinant of its transition matrix is an injective (surjective, respectively) single variable automaton. We prove that in the one-dimensional case every injective automaton can be factored into a sequence of elementary automata, defined by elementary transition matrices. Finally, we investigate the factoring problem in higher dimensional spaces.

Keywords

Cellular Automaton Local Ring Commutative Ring Cellular Automaton Local Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Amoroso and Y. Patt. Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures. Journal of Computer and System Sciences 6 (1972): 448–464.zbMATHMathSciNetGoogle Scholar
  2. 2.
    H. Aso and N. Honda. Dynamical Characteristics of Linear Cellular Automata. Journal of Computer and System Sciences 30 (1985), 291–317.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A. Bruckers and A. van den Enken. New networks for perfect inversion and perfect reconstruction. IEEE J. Select. Areas Commun. 10 (1992), 130–137.Google Scholar
  4. 4.
    P.M. Cohn. On the structure of the GL2 of a ring. Inst. Hautes Études Sci. Publ. Math. 30 (1966), 365–413.zbMATHCrossRefGoogle Scholar
  5. 5.
    K. Culik II. On Invertible Cellular Automata. Complex Systems 1 (1987): 1035–1044.zbMATHMathSciNetGoogle Scholar
  6. 6.
    G. Hedlund. Endomorphisms and automorphisms of shift dynamical systems, Mathematical Systems Theory 3 (1969), 320–375.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Ito, N. Osato and M. Nasu. Linear Cellular Automata over ℤm. Journal of Computer and System Sciences 27 (1983), 125–140.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    J. Kari. Reversibility and surjectivity problems of cellular automata, Journal of Computer and System Sciences 48, 149–182, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Kari. Representation of reversible cellular automata with block permutations. Mathematical Systems Theory 29, 47–61, 1996.zbMATHMathSciNetGoogle Scholar
  10. 10.
    G. Manzini and L. Margara. Invertible Linear Cellular Automata over ℤm: Algorithmic and Dynamical Aspects. Journal of Computer and System Sciences 56 (1998), 60–67.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    N. McCoy. Rings and Ideals, 1948.Google Scholar
  12. 12.
    B. McDonald. Finite Rings with Identity, 1974.Google Scholar
  13. 13.
    E.F. Moore. Machine Models of Self-reproduction. Proc. Sympos. Appl. Math. 14 (1962): 17–33.Google Scholar
  14. 14.
    J. Myhill. The Converse to Moore’s Garden-of-Eden Theorem. Proc. Amer. Math. Soc. 14 (1963): 685–686.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    H.A. Park. A Computational Theory of Laurent Polynomial Rings and Multidimensional FIR Systems, Ph.D. thesis, UC Berkeley, 1995.Google Scholar
  16. 16.
    D. Richardson. Tessellation with local transformations, Journal of Computer and System Sciences 6 (1972), 373–388.zbMATHMathSciNetGoogle Scholar
  17. 17.
    T. Sato. Decidability of some problems of linear cellular automata over finite commutative rings. Information Processing Letters 46 (1993), 151–155.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    J.M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing, Special Issue on Wavelets and Signal Processing 41(12) (1993), 3445–3462.zbMATHGoogle Scholar
  19. 19.
    A.A. Suslin. On the structure of the special linear group over polynomial rings. Math. USSR Izv. 11 (1977), 221–238.zbMATHCrossRefGoogle Scholar
  20. 20.
    T. Toffoli and N. Margolus. Cellular Automata Machines, MIT Press, Cambridge, Massachusetts, 1987.Google Scholar
  21. 21.
    T. Toffoli and N. Margolus. Invertible Cellular Automata: A Review, Physica D, 45 (1990), 229–253.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    L. Tolhuizen H. Hollmann and T. Kalker. On the Realizability of Biorthogonal, m-Dimensional Two-Band Filter Banks. IEEE Transactions on Signal Processing 43 (1995), 640–648.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Jarkko Kari
    • 1
  1. 1.Department of Computer Science, MLH 14University of IowaUSA

Personalised recommendations