Advertisement

Characterizing and Deciding MSO-Definability of Macro Tree Transductions

  • Joost Engelfriet
  • Sebastian Maneth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1770)

Abstract

A macro tree transduction is MSO definable if and only if it is of linear size increase. Furthermore, it is decidable for a macro tree transduction whether or not it is MSO definable.

Keywords

Input Tree Tree Automaton Rank Zero Tree Transduction Attribute Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AU71]
    A. V. Aho and J. D. Ullman. Translations on a context-free grammar. Inform and Control, 19:439–475, 1971.CrossRefMathSciNetGoogle Scholar
  2. [BE98]
    R. Bloem and J. Engelfriet. A comparison of tree transductions defined by monadic second order logic and by attribute grammars. Technical Report 98-02, Leiden University, 1998. To appear in J. of Comp. Syst. Sci. Google Scholar
  3. [CF82]
    B. Courcelle and P. Franchi-Zannettacci. Attribute grammars and recursive program schemes. Theoret. Comput. Sci., 17:163–191 and 235–257, 1982.CrossRefMathSciNetGoogle Scholar
  4. [Cou94]
    B. Courcelle. Monadic second-order definable graph transductions: a survey. Theoret. Comput. Sci., 126:53–75, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [Cou95]
    B. Courcelle. Structural properties of context-free sets of graphs generated by vertex replacement. Inform. and Comput., 116:275–293, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [DE98]
    F. Drewes and J. Engelfriet. Decidability of finiteness of ranges of tree transductions. Inform. and Comput., 145:1–50, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [Dre99]
    F. Drewes. The complexity of the exponential output size problem for top-down tree transducers. In G. Ciobanu and Gh. PĂun, editors, Proc. FCT 99, volume 1684 of LNCS, pages 234–245. Springer-Verlag, 1999.Google Scholar
  8. [EM]
    J. Engelfriet and S. Maneth. Macro tree transducers of linear size increase. In preparation, http://www.wi.leidenuniv.nl/~maneth/LSI.ps.gz.
  9. [EM99]
    J. Engelfriet and S. Maneth. Macro tree transducers, attribute grammars, and MSO definable tree translations. Inform. and Comput., 154:34–91, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [ERS80]
    J. Engelfriet, G. Rozenberg, and G. Slutzki. Tree transducers, L systems, and two-way machines. J. of Comp. Syst. Sci., 20:150–202, 1980.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [EV85]
    J. Engelfriet and H. Vogler. Macro tree transducers. J. of Comp. Syst. Sci., 31:71–146, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [FV98]
    Z. Fülöp and H. Vogler. Syntax-Directed Semantics — Formal Models based on Tree Transducers. EATCS Monographs on Theoretical Computer Science (W. Brauer, G. Rozenberg, A. Salomaa, eds.). Springer-Verlag, 1998.Google Scholar
  13. [GS97]
    F. Gécseg and M. Steinby. Tree automata. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages. Vol. 3. Chap. 1. Springer-Verlag, 1997.Google Scholar
  14. [KS94]
    N. Klarlund and M. I. Schwartzbach. Graphs and decidable transductions based on edge constraints. In S. Tison, editor, Proc. CAAP 94, volume 787 of LNCS, pages 187–201. Springer-Verlag, 1994.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Joost Engelfriet
    • 1
  • Sebastian Maneth
    • 1
  1. 1.LIACSLeiden UniversityLeidenThe Netherlands

Personalised recommendations