An Improved Lower Bound on the Approximability of Metric TSP and Approximation Algorithms for the TSP with Sharpened Triangle Inequality

Extended Abstract
  • Hans-Joachim Böckenhauer
  • Juraj Hromkovič
  • Ralf Klasing
  • Sebastian Seibert
  • Walter Unger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1770)

Abstract

The traveling salesman problem (TSP) is one of the hardest optimization problems in NPO because it does not admit any polynomial time approximation algorithm (unless P = NP). On the other hand we have a polynomial time approximation scheme (PTAS) for the Euclidean TSP and the 23-approximation algorithm of Christofides for TSP instances satisfying the triangle inequality. The main contributions of this paper are the following:
  1. (i)

    We essentially modify the method of Engebretsen [En99] in order to get a lower bound of 3813/3812 − ε on the polynomial-time approximability of the metric TSP for any ε > 0. This is an improvement over the lower bound of 5381/5380 − ε in [En99]. Using this approach we moreover prove a lower bound δβ on the approximability of Δβ-TSP for 1/2 < β < 1, where Δβ-TSP is a subproblem of the TSP whose input instances satisfy the β-sharpened triangle inequality cost(u; v) ≤ β· (cost(u; x) + cost(x; v)) for all vertices u; v; x.

     
  2. (ii)

    We present three different methods for the design of polynomial-time approximation algorithms for Δβ-TSP with 1/2 < β < 1, where the approximation ratio lies between 1 and 3/2, depending on β.

     

Keywords

Approximation algorithms Traveling Salesman Problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ar96]
    S. Arora: Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and Other Geometric Problems. J. ACM 45(5), 1998, pp. 753–782.MATHCrossRefMathSciNetGoogle Scholar
  2. [Ar97]
    S. Arora: Nearly linear time approximation schemes for Euclidean TSP and other geometric problems. In: Proc. 38th IEEE FOCS, 1997, pp. 554–563.Google Scholar
  3. [AB95]
    T. Andreae, H.-J. Bandelt: Performance guarantees for approximation algorithms depending on parametrized triangle inequalities. SIAM J. Discr. Math. 8 (1995), pp. 1–16.MATHCrossRefMathSciNetGoogle Scholar
  4. [BC99]
    M. A. Bender, C. Chekuri: Performance guarantees for the TSP with a parameterized triangle inequality. In: Proc. WADS’99, LNCS 1663, Springer 1999, pp. 80–85.Google Scholar
  5. [BHKSU99]
    H.-J. Böckenhauer, J. Hromkovič, R. Klasing, S. Seibert, W. Unger: Towards the Notion of Stability of Approximation Algorithms and the Traveling Salesman Problem. Extended abstract in: Proc. CIAC 2000, LNCS, to appear. Full version in: Electronic Colloquium on Computational Complexity, Report No. 31 (1999).Google Scholar
  6. [BK98]
    P. Berman, M. Karpinski: On some tighter inapproximability results. Technical Report TR98-029, Electronic Colloquium on Computational Complexity, 1998.Google Scholar
  7. [Chr76]
    N. Christofides: Worst-case analysis of a new heuristic for the traveling salesman problem. Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, 1976.Google Scholar
  8. [En99]
    L. Engebretsen: An explicit lower bound for TSP with distances one and two. Extended abstract in: Proc. STACS’99, LNCS 1563, Springer 1999, pp. 373–382. Full version in: Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 46 (1999).Google Scholar
  9. [EJ70]
    J. Edmonds, E. L. Johnson: Matching: A Well-Solved Class of Integer Linear Programs. In: Proc. Calgary International Conference on Combinatorial Structures and Their Applications, Gordon and Breach 1970, pp. 89–92.Google Scholar
  10. [GT91]
    H. N. Gabov, R. E. Tarjan: Faster Scaling Algorithms for General Graph-Matching Problems. In: J. ACM 38(4), 1991, pp. 815–853.CrossRefGoogle Scholar
  11. [Ho96]
    D. S. Hochbaum (Ed.): Approximation Algorithms for NP-hard Problems. PWS Publishing Company 1996.Google Scholar
  12. [LLRS85]
    E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys (Eds.): The Traveling Salesman Problem. John Wiley & Sons, 1985.Google Scholar
  13. [Mi96]
    I. S. B. Mitchell: Guillotine subdivisions approximate polygonal subdivisions: Part II — a simple polynomial-time approximation scheme for geometric k-MST, TSP and related problems. Technical Report, Dept. of Applied Mathematics and Statistics, Stony Brook 1996.Google Scholar
  14. [MPS98]
    E. W. Mayr, H. J. Prömel, A. Steger (Eds.): Lectures on Proof Verification and Approximation Algorithms. LNCS 1967, Springer 1998.MATHGoogle Scholar
  15. [PY93]
    Ch. Papadimitriou, M. Yannakakis: The traveling salesman problem with distances one and two. Mathematics of Operations Research 18 (1993), 1–11.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Hans-Joachim Böckenhauer
    • 1
  • Juraj Hromkovič
    • 1
  • Ralf Klasing
    • 1
  • Sebastian Seibert
    • 1
  • Walter Unger
    • 1
  1. 1.Lehrstuhl für Informatik I (Algorithmen und Komplexität)RWTH AachenAachenGermany

Personalised recommendations