Circuits versus Trees in Algebraic Complexity

  • Pascal Koiran
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1770)

Abstract

This survey is devoted to some aspects of the “P = NP ?” problem over the real numbers and more general algebraic structures. We argue that given a structure M, it is important to find out whether NPM problems can be solved by polynomial depth computation trees, and if so whether these trees can be efficiently simulated by circuits. Point location, a problem of computational geometry, comes into play in the study of these questions for several structures of interest.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.L. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity I. EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1988.Google Scholar
  2. 2.
    S. Basu, R. Pollack, and M.-F. Roy. On the combinatorial and algebraic complexity of quantifier elimination. Journal of the ACM, 43(6):1002–1045, 1996.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    L. Blum, F. Cucker, M. Shub, and S. Smale. Algebraic settings for the problem “P≠NP?”. In J. Renegar, M. Shub, and S. Smale, editors, The Mathematics of Numerical Analysis, volume 32 of Lectures in Applied Mathematics, pages 125–144. American Mathematical Society, 1996.Google Scholar
  4. 4.
    L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer-Verlag, 1998.Google Scholar
  5. 5.
    L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bulletin of the American Mathematical Society, 21(1):1–46, July 1989.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Bourgade. Séparations et transferts dans la hiérarchie polynomiale des groupes abéliens infinis. preprint, 1999.Google Scholar
  7. 7.
    P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory. Springer, 1997.Google Scholar
  8. 8.
    O. Chapuis and P. Koiran. Saturation and stability in the theory of computation over the reals. Annals of Pure and Applied Logic, 99:1–49, 1999.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A. Chistov and D. Grigoriev. Subexponential-time solving systems of algebraic equations I, II. Preprints LOMI E-9-83, E-10-83, Leningrad, 1983.Google Scholar
  10. 10.
    A. Chistov and D. Grigoriev. Complexity of quantifier elimination in the theory of algebraically closed fields. In Proc. MFCS’84, volume 176 of Lectures Notes in Computer Science, pages 17–31. Springer-Verlag, 1984.Google Scholar
  11. 11.
    F. Cucker and D. Grigoriev. On the power of real Turing machines with binary inputs. SIAM Journal on Computing, 26(1):243–254, 1997.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    F. Cucker and P. Koiran. Computing over the reals with addition and order: Higher complexity classes. Journal of Complexity, 11:358–376, 1995.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    N. Fichtas, A. Galligo, and J. Morgenstern. Precise sequential and parallel complexity bounds for quantifier elimination over algebraically closed fields. Journal of Pure and Applied Algebra, 67:1–14, 1990.CrossRefMathSciNetGoogle Scholar
  14. 14.
    H. Fournier and P. Koiran. Are lower bounds easier over the reals? In Proc. 30th ACM Symposium on Theory of Computing, pages 507–513, 1998.Google Scholar
  15. 15.
    H. Fournier and P. Koiran. Lower bounds are not easier over the reals: Inside PH. LIP Research Report 99-21, Ecole Normale Supérieure de Lyon, 1999.Google Scholar
  16. 16.
    J. B. Goode. Accessible telephone directories. Journal of Symbolic Logic, 59(1):92–105, 1994.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    J. E. Goodman and J. O’Rourke, editors. Handbook of Discrete and Computational Geometry. CRC Press, 1997.Google Scholar
  18. 18.
    D. Grigoriev. Complexity of deciding Tarksi algebra. Journal of Symbolic Computation, 5:65–208, 1988.CrossRefMathSciNetGoogle Scholar
  19. 19.
    D. Grigoriev. Complexity of quantifier elimination in the theory of ordinary differential equations. In Proc. Eurocal’87, volume 378 of Lectures Notes in Computer Science, pages 11–25. Springer-Verlag, 1989.Google Scholar
  20. 20.
    D. Grigoriev. Topological complexity of the range searching. To appear in Journal of Complexity.Google Scholar
  21. 21.
    D. Grigoriev, M. Karpinski, and R. Smolensky. Randomization and the computational power of algebraic and analytic decision trees. Computational Complexity, 6(4):376–388, 1996/97.CrossRefMathSciNetGoogle Scholar
  22. 22.
    D. Grigoriev, M. Singer, and A. Yao. On computing algebraic functions using logarithms and exponentials. SIAM Journal on Computing, 24(2):242–246, 1995.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    D. Grigoriev and N. Vorobjov. Complexity lower bounds for computation trees with elementary transcendental function gates. Theoretical Computer Science, 2:185–214, 1996.CrossRefMathSciNetGoogle Scholar
  24. 24.
    W. Hodges. Model Theory. Encyclopedia of Mathematics and its Applications 42. Cambridge University Press, 1993.Google Scholar
  25. 25.
    P. Koiran. Computing over the reals with addition and order. Theoretical Computer Science, 133(1):35–48, 1994.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    P. Koiran. VC dimension in circuit complexity. In Proc. 11th IEEE Conference on Computational Complexity, pages 81–85, 1996.Google Scholar
  27. 27.
    P. Koiran. Elimination of constants from machines over algebraically closed fields. Journal of Complexity, 13(1):65–82, 1997. Erratum on http://www.enslyon.fr/~koiran.MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    P. Koiran. A weak version of the Blum, Shub & Smale model. Journal of Computer and System Sciences, 54:177–189, 1997.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    K. Meer. A note on a PN P result for a restricted class of real machines. Journal of Complexity, 8:451–453, 1992.MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    S. Meiser. Point location in arrangements of hyperplanes. Information and Computation, 106(2):286–303, 1993.MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    F. Meyer auf der Heide. A polynomial linear search algorithm for the n-dimensional knapsack problem. Journal of the ACM, 31(3):668–676, 1984.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    F. Meyer auf der Heide. Fast algorithms for n-dimensional restrictions of hard problems. Journal of the ACM, 35(3):740–747, 1988.CrossRefMathSciNetGoogle Scholar
  33. 33.
    C Michaux. Une remarque à propos des machines sur ℝ introduites par Blum, Shub et Smale. C. R. Acad. Sci. Paris, 309, Série I:435–437, 1989.MathSciNetGoogle Scholar
  34. 34.
    B. Poizat. Cours de Théorie des Modèles. Nur Al-Mantiq Wal-Ma’rifah 1. 1985.Google Scholar
  35. 35.
    B. Poizat. Les Petits Cailloux. Nur Al-Mantiq Wal-Ma’rifah 3. Aléas, Lyon, 1995.Google Scholar
  36. 36.
    N. Portier. Stabilité polynomiale des corps différentiels. Journal of Symbolic Logic, 64(2):803–816, 1999.MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    J. Renegar. On the computational complexity and geometry of the first-order theory of the reals. parts I, II, III. Journal of Symbolic Computation, 13(3):255–352, March 1992.MATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    M. Shub and S. Smale. On the intractability of Hilbert’s Nullstellensatz and an algebraic version of “P=NP”. Duke Mathematical Journal, 81(1):47–54, 1996.CrossRefMathSciNetGoogle Scholar
  39. 39.
    S. Smale. On the topology of algorithms. I. Journal of Complexity, 3:81–89, 1987.MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    S. Smale. On the P=NP problem over the complex numbers. Lecture given at the MSRI workshop on Complexity of Continuous and Algebraic Mathematics, November 1998. Lecture on video at http://www.msri.org.
  41. 41.
    V. A. Vassiliev. Complements of Discriminants of Smooth Maps: Topology and Applications. Translations of Mathematical Monographs 98. American Mathematical Society, 1994.Google Scholar
  42. 42.
    J. von zur Gathen. Parallel arithmetic computations: a survey. In Mathematical Foundations of Computer Science, volume 233 of Lecture Notes in Computer Science, pages 93–112. Springer-Verlag, 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Pascal Koiran
    • 1
  1. 1.LIPEcole Normale Supérieure de LyonLyon Cedex 07France

Personalised recommendations