The Boolean Hierarchy of NP-Partitions

Extended Abstract
  • Sven Kosub
  • Klaus W. Wagner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1770)


We introduce the boolean hierarchy of k-partitions over NP for k ≥ 3 as a generalization of the boolean hierarchy of sets (i.e., 2-partitions) over NP. Whereas the structure of the latter hierarchy is rather simple the structure of the boolean hierarchy of k-partitions over NP for k ≥ 3 turns out to be much more complicated. We establish the Embedding Conjecture which enables us to get a complete idea of this structure. This conjecture is supported by several partial results.


Equivalence Class Partial Order Boolean Function Partition Class Acceptance Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.-Y. Cai, T. Gundermann, J. Hartmanis, L. A. Hemachandra, V. Sewelson, K. W. Wagner, and G. Wechsung. The boolean hierarchy I: Structural properties. SIAM Journal on Computing, 17(6):1232–1252, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    J.-Y. Cai and L. Hemachandra. The Boolean hierarchy: hardware over NP. In Proceedings 1st Structure in Complexity Theory Conference, volume 223 of Lecture Notes in Computer Science, pages 105–124. Springer-Verlag, 1986.Google Scholar
  3. 3.
    G. Grätzer. General Lattice Theory. Akademie-Verlag, Berlin, 1978.Google Scholar
  4. 4.
    L. A. Hemaspaandra, A. Hoene, A. V. Naik, M. Ogihara, A. L. Selman, T. Thierauf, and J. Wang. Nondeterministically selective sets. International Journal of Foundations of Computer Science, 6(4):403–416, 1995.zbMATHCrossRefGoogle Scholar
  5. 5.
    U. Hertrampf. Locally definable acceptance types — the three-valued case. In Proceedings 1st Latin American Symposium on Theoretical Informatics, volume 583 of Lecture Notes in Computer Science, pages 262–271, Berlin, 1992. Springer-Verlag.Google Scholar
  6. 6.
    J. Kadin. The polynomial time hierarchy collapses if the Boolean hierarchy collapses. SIAM Journal on Computing, 17(6):1263–1282, 1988. Erratum in same journal 20(2):404, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    J. Köbler, U. Schöning, and K. W. Wagner. The difference and truth-table hierarchies for NP. RAIRO Theoretical Informatics and Applications, 21(4):419–435, 1987.zbMATHGoogle Scholar
  8. 8.
    K. W. Wagner and G. Wechsung. On the boolean closure of NP. Extended abstract as: G. Wechsung. On the boolean closure of NP. Proceedings 5th International Conference on Fundamentals in Computation Theory, volume 199 of Lecture Notes in Computer Science, pages 485–493, Berlin, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Sven Kosub
    • 1
  • Klaus W. Wagner
    • 1
  1. 1.Theoretische InformatikJulius-Maximilians-Universität WürzburgWürzburgGermany

Personalised recommendations