Faster Exact Solutions for Max2Sat

  • Jens Gramm
  • Rolf Niedermeier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1767)


Given a boolean 2CNF formula F, the Max2Sat problem is that of finding the maximum number of clauses satisfiable simultaneously. In the corresponding decision version, we are given an additional parameter k and the question is whether we can simultaneously satisfy at least k clauses. This problem is NP-complete. We improve on known upper bounds on the worst case running time of Max2Sat, implying also new upper bounds for Maximum Cut. In particular, we give experimental results, indicating the practical relevance of our algorithms.


NP-complete problems exact algorithms parameterized complexity Max2Sat Maximum Cut 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Bansal and V. Raman. Upper bounds for MaxSat: Further improved. In Proceedings of the 10th International Symposium on Algorithms and Computation, Lecture Notes in Computer Science, Chennai, India, Dec. 1999. Springer-Verlag.Google Scholar
  2. 2.
    R. Battiti and M. Protasi. Approximate algorithms and heuristics for MAX-SAT. In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization, volume 1, pages 77–148. Kluwer Academic Publishers, 1998.Google Scholar
  3. 3.
    B. Borchers and J. Furman. A two-phase exact algorithm for MAX-SAT and weighted MAX-SAT problems. Journal of Combinatorial Optimization, 2(4):299–306, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    J. Cheriyan, W. H. Cunningham, L. Tunçel, and Y. Wang. A linear programming and rounding approach to Max 2-Sat. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 26:395–414, 1996.Google Scholar
  5. 5.
    R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag, 1999.Google Scholar
  6. 6.
    U. Feige and M. X. Goemans. Approximating the value of two prover proof systems, with applications to MAX 2SAT and MAX DICUT. In 3d IEEE Israel Symposium on the Theory of Computing and Systems, pages182–189, 1995.Google Scholar
  7. 7.
    M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, San Francisco, 1979.zbMATHGoogle Scholar
  8. 8.
    J. Gramm. Exact algorithms for Max2Sat: and their applications. Diplomarbeit, Universität Tübingen, 1999. Available through
  9. 9.
    J. Håstad. Some optimal inapproximability results. In Proceedings of the 29th ACM Symposium on Theory of Computing, pages 1–10, 1997.Google Scholar
  10. 10.
    E. A. Hirsch. A new algorithm for MAX-2-SAT. Technical Report TR99-036, ECCC Trier, 1999. To appear at STACS 2000.Google Scholar
  11. 11.
    M. Mahajan and V. Raman. Parameterizing above guaranteed values: MaxSat and MaxCut. Journal of Algorithms, 31:335–354, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    R. Niedermeier and P. Rossmanith. New upper bounds for MaxSat. In Proceedings of the 26th International Conference on Automata, Languages, and Programming, number 1644 in Lecture Notes in Computer Science, pages 575–584. Springer-Verlag, July 1999. Long version to appear in Journal of Algorithms.CrossRefGoogle Scholar
  13. 13.
    V. Raman, B. Ravikumar, and S. S. Rao. A simplified NP-complete MAXSAT problem. Information Processing Letters, 65:1–6, 1998.CrossRefMathSciNetGoogle Scholar
  14. 14.
    B. Selman. MWFF: Program for generating random Maxk-Sat instances. Available from DIMACS, 1992.Google Scholar
  15. 15.
    M. Yannakakis. On the approximation of maximum satisfiability. Journal of Al-gorithms, 17:475–502, 1994.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Jens Gramm
    • 1
  • Rolf Niedermeier
    • 1
  1. 1.Wilhelm-Schickard-Institut für InformatikUniversität TübingenTübingenFed. Rep. of Germany

Personalised recommendations