Advertisement

A Unified Approach for Indexed and Non-indexed Spatial Joins

  • Lars Arge
  • Octavian Procopiuc
  • Sridhar Ramaswamy
  • Torsten Suel
  • Jan Vahrenhold
  • Jeffrey Scott Vitter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1777)

Abstract

Most spatial join algorithms either assume the existence of a spatial index structure that is traversed during the join process, or solve the problem by sorting, partitioning, or on-the-fly index construction. In this paper, we develop a simple plane-sweeping algorithm that unifies the index-based and non-index based approaches. This algorithm processes indexed as well as non-indexed inputs, extends naturally to multi-way joins, and can be built easily from a few standard operations. We present the results of a comparative study of the new algorithm with several index-based and non-index based spatial join algorithms. We consider a number of factors, including the relative performance of CPU and disk, the quality of the spatial indexes, and the sizes of the input relations. An important conclusion from our work is that using an index-based approach whenever indexes are available does not always lead to the best execution time, and hence we propose the use of a simple cost model to decide when to follow an index-based approach.

Keywords

Geographic Information System Index Structure Priority Queue Spatial Object Internal Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Acharya, V. Poosala, and S. Ramaswamy. Selectivity estimation in spatial databases. In Proc. SIGMOD Intl. Conf. on Management of Data, pages 13–24, 1999.Google Scholar
  2. 2.
    L. Arge. The buffer tree: A new technique for optimal I/O-algorithms. In Proc. Workshop on Algorithms and Data Structures, LNCS 955, pages 334–345, 1995. A complete version appears as BRICS technical report RS-96-28, University of Aarhus.Google Scholar
  3. 3.
    L. Arge, R. Barve, O. Procopiuc, L. Toma, D. E. Vengroff, and R. Wickeremesinghe. TPIE User Manual and Reference (edition 0.9.01a). Duke University, 1999. The manual and software distribution are available on the web at http://www.cs.duke.edu/TPIE/.
  4. 4.
    L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter. Scalable sweeping-based spatial join. In Proc. Intl. Conf. on Very Large Databases, pages 570–581, 1998.Google Scholar
  5. 5.
    L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter. Theory and practice of I/O-efficient algorithms for multidimensional batched searching problems. In ACM-SIAM Symp. on Discrete Algorithms, pages 685–694, 1998.Google Scholar
  6. 6.
    L. Becker, K. Hinrichs, and U. Finke. A new algorithm for computing joins with grid files. In Proc. IEEE Intl. Conf. on Data Engineering, pages 190–197, 1993.Google Scholar
  7. 7.
    N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient and robust access method for points and rectangles. In Proc. SIGMOD Intl. Conf. on Management of Data, pages 322–331, 1990.Google Scholar
  8. 8.
    T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient processing of spatial joins using R-trees. In Proc. SIGMOD Intl. Conf. on Management of Data, pages 237–246, 1993.Google Scholar
  9. 9.
    G. S. Brodal and J. Katajainen. Worst-case efficient external-memory priority queues. In Proc. Scandinavian Workshop on Algorithms Theory, LNCS 1432, pages 107–118, 1998.Google Scholar
  10. 10.
    D. J. DeWitt, N. Kabra, J. M. Patel, and J.-B. Yu. Client-server Paradise. In Proc. Intl. Conf. on Very Large Databases, pages 558–569, 1994.Google Scholar
  11. 11.
    M. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory computational geometry. In Proc. IEEE Symp. on Foundations of Computer Science, pages 714–723, 1993.Google Scholar
  12. 12.
    O. Günther. Efficient computation of spatial joins. In Proc. IEEE Intl. Conf. on Data Engineering, pages 50–59, 1993.Google Scholar
  13. 13.
    R. H. Güting and W. Schilling. A practical divide-and conquer algorithm for the rectangle intersection problem. Information Sciences, 42: 95–112, 1987.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc. SIGMOD Intl. Conf. on Management of Data, pages 47–57, 1984.Google Scholar
  15. 15.
    E. G. Hoel and H. Samet. A qualitative comparison study of data structures for large linear segment databases. In Proc. SIGMOD Intl. Conf. on Management of Data, pages 205–214, 1992.Google Scholar
  16. 16.
    Y.-W. Huang, N. Jing, and E. Rundensteiner. Spatial joins using R-trees: Breadth-first traversal with global optimizations. In Proc. Intl. Conf. on Very Large Databases, pages 396–405, 1997.Google Scholar
  17. 17.
    I. Kamel and C. Faloutsos. On packing R-trees. In Proc. Intl. Conf. on Information and Knowledge Management, pages 47–57, 1993.Google Scholar
  18. 18.
    K. Kim and S. K. Cha. Sibling clustering of tree-based spatial indexes for efficient spatial query processing. In Proc. ACM Intl. Conf. Information and Knowledge Management, pages 398–405, 1998.Google Scholar
  19. 19.
    M. Kitsuregawa, L. Harada, and M. Takagi. Join strategies on KD-tree indexed relations. In Proc. IEEE Intl. Conf. on Data Engineering, pages 85–93, 1989.Google Scholar
  20. 20.
    N. Koudas and K. C. Sevcik. Size separation spatial join. In Proc. SIGMOD Intl. Conf. on Management of Data, pages 324–335, 1996.Google Scholar
  21. 21.
    M.-L. Lo and C. V. Ravishankar. Spatial joins using seeded trees. In Proc. SIG-MOD Intl. Conf. on Management of Data, pages 209–220, 1994.Google Scholar
  22. 22.
    M.-L. Lo and C. V. Ravishankar. Generating seeded trees from data sets. In Proc. Intl. Symp. on Spatial Databases, LNCS 951, pages 328–347, 1995.Google Scholar
  23. 23.
    M.-L. Lo and C. V. Ravishankar. Spatial hash-joins. In Proc. SIGMOD Intl. Conf. on Management of Data, pages 247–258, 1996.Google Scholar
  24. 24.
    N. Mamoulis and D. Papadias. Integration of spatial join algorithms for joining multiple inputs. In Proc. SIGMOD Intl. Conf. on Management of Data, pages 1–12, 1999.Google Scholar
  25. 25.
    N. Mamoulis, D. Papadias, and Y. Theodoridis. Processing and optimization of multiway spatial joins using R-trees. In Proc. Symp. on Principles of Database Systems, pages 44–55, 1999.Google Scholar
  26. 26.
    D. R. Musser and A. Saini. STL Tutorial and Reference Guide: C++ Programming with the Standard Template Library. Addison-Wesley, 1996.Google Scholar
  27. 27.
    J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: An adaptable, symmetric multikey file structure. ACM Trans. on Database Systems, 9(1):38–71, March 1984.CrossRefGoogle Scholar
  28. 28.
    J. A. Orenstein. A comparison of spatial query processing techniques for native and parameter spaces. In Proc. SIGMOD Intl. Conf. on Management of Data, pages 343–352, 1990.Google Scholar
  29. 29.
    J. A. Orenstein and F. A. Manola. PROBE spatial data modeling and query processing in an image database application. IEEE Trans. on Software Engineering, 14(5):611–629, May 1988.CrossRefGoogle Scholar
  30. 30.
    J. M. Patel and D. J. DeWitt. Partition based spatial-merge join. In Proc. SIG-MOD Intl. Conf. on Management of Data, pages 259–270, 1996.Google Scholar
  31. 31.
    F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer, Berlin, 2nd edition, 1988.Google Scholar
  32. 32.
    D. Rotem. Spatial join indices. In Proc. IEEE Intl. Conf. on Data Engineering, pages 500–509, 1991.Google Scholar
  33. 33.
    H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.Google Scholar
  34. 34.
    T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A dynamic index for multi-dimensional objects. In Proc. Intl. Conf. on Very Large Databases, pages 507–518, 1987.Google Scholar
  35. 35.
    TIGER/LineFiles, 1997 Technical Documentation. Washington, DC, September 1998. http://www.census.gov/geo/tiger/TIGER97D.pdf.
  36. 36.
    U. Vahalia. UNIX Internals: The New Frontiers. Prentice Hall, 1996.Google Scholar
  37. 37.
    P. Valduriez. Join indices. ACM Trans. on Database Systems, 12(2):218–246, June 1987.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Lars Arge
    • 1
  • Octavian Procopiuc
    • 1
  • Sridhar Ramaswamy
    • 2
  • Torsten Suel
    • 3
  • Jan Vahrenhold
    • 4
  • Jeffrey Scott Vitter
    • 1
  1. 1.Center for Geometric Computing, Department of Computer ScienceDuke UniversityDurham
  2. 2.Palo Alto
  3. 3.Computer and Information SciencePolytechnic UniversityBrooklyn
  4. 4.Institut für InformatikWestfälische Wilhelms-UniversitätMünsterGermany

Personalised recommendations