A Data Model for Semistructured Data with Partial and Inconsistent Information

  • Mengchi Liu
  • Tok Wang Ling
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1777)

Abstract

With the recent popularity of the World Wide Web, an enormous amount of heterogeneous information is now available online. As a result, information about real world objects may spread over different data sources and may be partial and inconsistent. How to manipulate such semistructured data is thus a challenge. Previous work on semistructured data mainly focuses on developing query languages and systems to retrieve semistructured data. Relatively less attention has been paid to the manipulation of such data. In order to manipulate such semistructured data, we need a data model that is more expressive than the existing graph-based and tree-based ones to account for the existence of partial and inconsistent information from different data sources. In this paper, we propose such a data model for semistructured data that allows partial and inconsistent information and discuss how to manipulate such semistructured data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Abiteboul. Querying Semistructured Data. In Proceedings of the International Conference on Data Base Theory, pages 1–18. Springer-Verlag LNCS 1186, 1997.Google Scholar
  2. 2.
    S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel Query Language for Semistructured Data. Intl. Journal of Digital Libraries, 1(1):68–88, 1997.Google Scholar
  3. 3.
    J. L. Ambite, N. Ashish, G. Barish, G.A. Knoblock, S. Minton, P.J. Modi, I. Muslea, A. Philpot, and S. Tejada. ARIADNE: A system for constructing mediators for internet sources. In Proceedings of the ACM SIGMOD International Conference on Management of Data, 1998.Google Scholar
  4. 4.
    G. Arocena and A. Mendelzon. WebOQL: Restructuring Documents, Databases and Webs. In Proceedings of the International Conference on Data Engineering, pages 24–33. IEEE Computer Society, 1998.Google Scholar
  5. 5.
    F. Bancilhon and S. Khoshafian. A Calculus for Complex Objects. J. Computer and System Sciences, 38(2):326–340, 1989.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    C. Beeri, G. Elber, T. Milo, Y. Sagiv, O. Shmueli, N. Tishby, Y. Kogan, D. Konopnicki, P. Mogilevski, and N. Slonim. Websuite — A tool suite for harnessing web data. In Proceedings of the International Workshop on the Web and Databases, 1998.Google Scholar
  7. 7.
    O. P. Buneman, S. B. Davidson, and A. Watters. A Semantics for Complex Objects and Approximate Answers. J. Computer and System Sciences, 43(1):170–218, 1991.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding Structure to Unstructured Data. In Proceedings of the International Conference on Data Base Theory, pages 336–350. Springer-Verlag LNCS 1186, 1997.Google Scholar
  9. 9.
    P. Buneman, S. Davidson, G. Hilebrand, and D. Suciu. A Query Language and Optimization Techniques for Unstructured Data. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 505–516, 1996.Google Scholar
  10. 10.
    S. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. D. Ullman, and J. Widom. The TSIMMIS Project: Integration of Heterogeneous Information Sources. In Proceedings of the 10th Meeting of the Information Processing Society of Japan, pages 7–18, 1994.Google Scholar
  11. 11.
    W. W. Cohen. Integration of Heterogeneous Databases without Common Domains Using Queries Based on Textual Similarity. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 201–212, 1998.Google Scholar
  12. 12.
    O. Shmueli D. Konopnicki. W3QS: A Query System for the World-Wide Web. In Proceedings of the International Conference on Very Large Data Bases, pages 54–65, Zurich, Switzerland, 1995. Morgan Kaufmann Publishers, Inc.Google Scholar
  13. 13.
    L.G. Demichiel. Resolving Database Incompatibility: An Approach to Performing Relational Operations over Mismatched Domains. IEEE Transactions on Knowledge and Data Engineering, 1(4):485–493, 1989.CrossRefGoogle Scholar
  14. 14.
    D. Florescu, A. Levy, and A. Mendelzon. Database Techniques for the World-Wide Web: A Survey. SIGMOD Record, 26(3), 1997.Google Scholar
  15. 15.
    R. Himmeroder, G. Lausen, B. Ludascher, and C. Schlepphorst. On a declarative semantics for web queries. In Proceedings of the International Conference on Deductive and Object-Oriented Databases, pages 386–398, Switzerland, 1997. Springer-Verlag LNCS.Google Scholar
  16. 16.
    R. Hull and G. Zhou. A Framework for Supporting Data Integration Using the Materialized and Virtual Approaches. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 481–492, 1996.Google Scholar
  17. 17.
    T. Imielinski and W. L. Jr. Incomplete Information in Relational Databases. Journal of ACM, 31(4):761–791, 1984.MATHCrossRefGoogle Scholar
  18. 18.
    W. L. Jr. On Databases with Incomplete Information. Journal of ACM, 28(1):41–70, 1981.CrossRefGoogle Scholar
  19. 19.
    L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian. A Declarative Language for Querying and Restructuring the Web. In Proceedings of the 6th International Workshop on Research Issues in Data Engineering, 1996.Google Scholar
  20. 20.
    L. Lamport. Latex User Guide and Reference Manual. Addison Wesley, 2 edition, 1994.Google Scholar
  21. 21.
    A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying heterogeneous information sources using source descriptions. In Proceedings of the International Conference on Very Large Data Bases, pages 251–262. Morgan Kaufmann Publishers, Inc., 1996.Google Scholar
  22. 22.
    L. Libkin. A Relational Algebra for Complex Objects based on Partial Information. In Proceedings of the Conference on Mathematical Foundations of Programming Semantics, pages 26–41, Rostock, Germany, 1991. Springer-Verlag LNCS 495.Google Scholar
  23. 23.
    L. Libkin. Normalizing Incomplete Databases. In Proceedings of the ACM Symposium on Principles of Database Systems, pages 219–230, San Jose, California, 1995.Google Scholar
  24. 24.
    M. Liu. ROL: A Deductive Object Base Language. Information Systems, 21(5):431–457, 1996.CrossRefGoogle Scholar
  25. 25.
    M. Liu. Relationlog: A Typed Extension to Datalog with Sets and Tuples. Journal of Logic Programming, 36(3):271–299, 1998.CrossRefMathSciNetGoogle Scholar
  26. 26.
    A. Mendelzon, G. Mihaila, and T. Milo. Querying the World Wide Web. In Proceedings of the First International Conference on Parellel and Distributed Information System, pages 80–91, 1996.Google Scholar
  27. 27.
    A. Motro and I. Rakov. Estimating the Quality of Data in Relational Databases. In Proceedings of the 1996 Conference on Information Quality, pages 94–106, 1996.Google Scholar
  28. 28.
    K. Munakata. Integration of Semistructured Data Using Outer Joins. In Proceedings of the Workshop on Management of Semistructured Data, 1997.Google Scholar
  29. 29.
    Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange across Heterogeneous Information. In Proceedings of the International Conference on Data Engineering, pages 251–260. IEEE Computer Society, 1995.Google Scholar
  30. 30.
    F. S. C. Tseng, A. L. P. Chen, and W. P. Yang. Answering Heterogeneous Databases Queries with Degrees of Uncertainty. Distributed and Parallel Databases, 1(3):281–302, 1993.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Mengchi Liu
    • 1
  • Tok Wang Ling
    • 2
  1. 1.Department of Computer ScienceUniversity of ReginaReginaCanada
  2. 2.School of ComputingNational University of SingaporeSingapore

Personalised recommendations