Proof Nets and Explicit Substitutions

  • Roberto Di Cosmo
  • Delia Kesner
  • Emmanuel Polonovski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1784)

Abstract

We refine the simulation technique introduced in [10] to show strong normalization of λ-calculi with explicit substitutions via termination of cut elimination in proof nets [13]. We first propose a notion of equivalence relation for proof nets that extends the one in [9], and we show that cut elimination modulo this equivalence relation is terminating. We then show strong normalization of the typed version of the λl-calculus with de Bruijn indices (a calculus with full composition defined in [8]) using a translation from typed λl to proof nets. Finally, we propose a version of typed λl with named variables which helps to better understand the complex mechanism of the explicit weakening notation introduced in the λl-calculus with de Bruijn indices [8].

References

  1. [1]
    M. Abadi, L. Cardelli, P. L. Curien, and J.-J. Lévy. Explicit substitutions. Journal of Functional Programming, 4(1):375–416, 1991.CrossRefGoogle Scholar
  2. [2]
    S. Abramsky and R. Jagadeesan. New foundations for the geometry of interaction. In Proc. of LICS, pages 211–222, 1992.Google Scholar
  3. [3]
    R. Bloo. Preservation of Termination for Explicit Substitution. PhD thesis, Eindhoven University of Technology, 1997.Google Scholar
  4. [4]
    R. Bloo and K. Rose. Preservation of strong normalization in named lambda calculi with explicit substitution and garbage collection. In Computing Science in the Netherlands, pages 62–72. Netherlands Computer Science Research Foundation, 1995.Google Scholar
  5. [5]
    V. Danos. La logique linéaire appliquée à l’étude de divers processus de normalisation (et principalement du λ-calcul). PhD thesis, Université de Paris VII, 1990. Thèse de doctorat de mathématiques.Google Scholar
  6. [6]
    V. Danos, J.-B. Joinet, and H. Schellinx. Sequent calculi for second order logic. In J.-Y. Girard, Y. Lafont, and L. Regnier, editors, Advances in Linear Logic. Cambridge University Press, 1995.Google Scholar
  7. [7]
    V. Danos and L. Regnier. Proof-nets and the Hilbert space. In J.-Y. Girard, Y. Lafont, and L. Regnier, editors, Advances in Linear Logic, pages 307–328. Cambridge University Press, London Mathematical Society Lecture Notes, 1995.Google Scholar
  8. [8]
    R. David and B. Guillaume. The λ l-calculus. In Proceedigs of WESTAPP, pages 2–13, Trento, Italy, 1999.Google Scholar
  9. [9]
    R. Di Cosmo and S. Guerrini. Strong normalization of proof nets modulo structural congruences. In P. Narendran and M. Rusinowitch, editors, Proc of RTA, volume 1631 of LNCS, pages 75–89, Trento, Italy, 1999. Springer Verlag.Google Scholar
  10. [10]
    R. Di Cosmo and D. Kesner. Strong normalization of explicit substitutions via cut elimination in proof nets. In Proc of LICS, pages 35–46, Warsaw, Poland, 1997.Google Scholar
  11. [11]
    R. Di Cosmo, D. Kesner, and E. Polonovski. Proof nets and explicit substitutions. Technical report, LRI, Université Paris-Sud, 2000. Available as ftp://ftp.lri.fr/LRI/articles/kesner/es-pn.ps.gz.
  12. [12]
    M. C. Ferreira, D. Kesner, and L. Puel. Lambda-calculi with explicit substitutions preserving strong normalization. Applicable Algebra in Engineering Communication and Computing, 9(4):333–371, 1999.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    J.-Y. Girard. Geometry of interaction I: interpretation of system F. In R. Ferro, C. Bonotto, S. Valentini, and A. Zanardo, editors, Logic colloquium 1988, pages 221–260. North Holland, 1989.Google Scholar
  15. [15]
    G. Gonthier, M. Abadi, and J.-J. Lévy. The geometry of optimal lambda reduction. In Proc. of POPL, pages 15–26, Albuquerque, New Mexico, 1992. ACM Press.Google Scholar
  16. [16]
    B. Guillaume. Un calcul de substitution avec Étiquettes. PhD thesis, Université de Savoie, 1999.Google Scholar
  17. [17]
    J. Lamping. An algorithm for optimal lambda calculus reduction. In Proc. of POPL, pages 16–30, San Francisco, California, 1990. ACM Press.Google Scholar
  18. [18]
    P.-A. Melliès. Typed λ-calculi with explicit substitutions may not terminate. In M. Dezani-Ciancaglini and G. Plotkin, editors, Proc of TLCA, volume 902 of LNCS, April 1995.Google Scholar
  19. [19]
    K. Rose. Explicit cyclic substitutions. In Rusinowitch and Rémy, editors, Proc. of CTRS, number 656 in LNCS, pages 36–50, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Roberto Di Cosmo
    • 1
  • Delia Kesner
    • 2
  • Emmanuel Polonovski
    • 1
  1. 1.PPSUniversité de Paris VIIParisFrance
  2. 2.LRIUniversité de Paris-SudOrsay CedexFrance

Personalised recommendations