Approximate Reachability Analysis of Piecewise-Linear Dynamical Systems

  • Eugene Asarin
  • Olivier Bournez
  • Thao Dang
  • Oded Maler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1790)

Abstract

In this paper we describe an experimental system called d/dt for approximating reachable states for hybrid systems whose continuous dynamics is defined by linear differential equations. We use an approximation algorithm whose accumulation of errors during the continuous evolution is much smaller than in previously-used methods. The d/dt system can, so far, treat non-trivial continuous systems, hybrid systems, convex differential inclusions and controller synthesis problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACH+95._R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis and S. Yovine, The Algorithmic Analysis of Hybrid Systems, Theoretical Computer Science 138, 3–34, 1995.MATHCrossRefMathSciNetGoogle Scholar
  2. AD94.
    R. Alur and D.L. Dill, A Theory of Timed Automata, Theoretical Computer Science 126, 183–235, 1994.MATHCrossRefMathSciNetGoogle Scholar
  3. ABDPM00.
    E. Asarin, O. Bournez, T. Dang, A. Pnueli and O. Maler, Effective Synthesis of Switching Controllers for Linear Systems, submitted for publication, 2000.Google Scholar
  4. BMP99.
    O. Bournez, O. Maler and A. Pnueli, Orthogonal Polyhedra: Representation and Computation, in J. van Schuppen (Eds.), Hybrid Systems: Computation and Control, LNCS 1569, Springer, 1999 [VS99], 46–60.CrossRefGoogle Scholar
  5. CV95.
    K. Cerans and J. Viksna, Deciding Reachability of Planar Multipolynomial systems, in R. Alur, T.A. Henzinger and E.D. Sontag (Eds.), Hybrid Systems III, 389–400, LNCS 1066, Springer, 1996.Google Scholar
  6. CK99.
    A. Chutinan and B.H. Krogh, Verification of Polyhedral Invariant Hybrid Automata Using Polygonal Flow Pipe Approximations, in J. van Schuppen (Eds.), Hybrid Systems: Computation and Control, LNCS 1569, Springer, 1999 [VS99] 76–90.CrossRefGoogle Scholar
  7. CC92.
    P. Cousot and R. Cousot, Abstract Interpretation and Application to Logic Programs, Journal of Logic Programming, 103–179, 1992.Google Scholar
  8. DM98.
    T. Dang, O. Maler, Reachability Analysis via Face Lifting, in T.A. Henzinger and S. Sastry (Eds), Hybrid Systems: Computation and Control, LNCS 1386, 96–109, Springer, 1998.Google Scholar
  9. DOTY96.
    C. Daws, A. Olivero, S. Tripakis, and S. Yovine, The Tool KRONOS, in R. Alur, T.A. Henzinger and E. Sontag (Eds.), Hybrid Systems III, LNCS 1066, 208–219, Springer, 1996.CrossRefGoogle Scholar
  10. G96.
    M.R. Greenstreet, Verifying Safety Properties of Differential Equations, in R. Alur and T.A. Henzinger (Eds.), Proc. CAV’96, LNCS 1102, 277–287, 1996.Google Scholar
  11. GM98.
    M.R. Greenstreet and I. Mitchell, Integrating Projections, in T.A. Henzinger and S. Sastry (Eds), Hybrid Systems: Computation and Control, LNCS 1386, 159–174, Springer, 1998.Google Scholar
  12. GM99.
    M.R. Greenstreet and I. Mitchell, Reachability Analysis Using Polygonal Projections, in J. van Schuppen (Eds.), Hybrid Systems: Computation and Control, LNCS 1569, Springer, 1999 [VS99] 76–90.CrossRefGoogle Scholar
  13. HHMW99.
    T.A. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi, Beyond HyTech: Hybrid System Analysis Using Interval Numerical Methods, AAAI Spring Symposium on Hybrid Systems, Stanford University, 1999.Google Scholar
  14. HHW97.
    T.A. Henzinger, P.-H. Ho, and H. Wong-Toi, HyTech: A Model Checker for Hybrid Systems, Software Tools for Technology Transfer 1, 110–122, 1997.MATHCrossRefGoogle Scholar
  15. KV97.
    A. Kurzhanski and I. Valyi, Ellipsoidal Calculus for Estimation and Control, Birkhauser, 1997.Google Scholar
  16. MV99.
    K. Mehlhorn and St. Nher, The LEDA Platform of Combinatorial and Geometric Computing, Cambridge University Press, 1999.Google Scholar
  17. PLY99.
    G. Pappas, G. Lafierriere and S. Yovine, A New Class of Decidable Hybrid Systems, in J. van Schuppen (Eds.), Hybrid Systems: Computation and Control, LNCS 1569, Springer, 1999 [VS99] 29–31.Google Scholar
  18. PSK99.
    J. Preussig, O. Stursberg and S. Kowalewski, Reachability Analysis of a Class of Switched Continuous Systems by Integrating Rectangular Approximation and Rectangular Analysis, in J. van Schuppen (Eds.), Hybrid Systems: Computation and Control, LNCS 1569, Springer, 1999 [VS99] 208–222.Google Scholar
  19. VS99.
    F. Vaandrager and J. van Schuppen (Eds.), Hybrid Systems: Computation and Control, LNCS 1569, Springer, 1999.MATHGoogle Scholar
  20. V98.
    P. Varaiya, Reach Set Computation using Optimal Control, Proc. KIT Workshop, Verimag, Grenoble, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Eugene Asarin
    • 1
  • Olivier Bournez
    • 2
  • Thao Dang
    • 1
  • Oded Maler
    • 1
  1. 1.Centre EquationVerimagGièeresFrance
  2. 2.LoriaVandoeuvre les NancyFrance

Personalised recommendations