On the Construction of Automata from Linear Arithmetic Constraints

  • Pierre Wolper
  • Bernard Boigelot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1785)

Abstract

This paper presents an overview of algorithms for constructing automata from linear arithmetic constraints. It identifies one case in which the special structure of the automata that are constructed allows a linear-time determinization procedure to be used. Furthermore, it shows through theoretical analysis and experiments that the special structure of the constructed automata does, in quite a general way, render the usual upper bounds on automata operations vastly overpessimistic.

References

  1. BBR97.
    B. Boigelot, L. Bronne, and S. Rassart. An improved reachability analysis method for strongly linear hybrid systems. In Proc. 9th Int. Conf.on Computer Aided Verification, volume 1254 of Lecture Notes in Computer Science, pages 167–178, Haifa, June 1997. Springer-Verlag. 3Google Scholar
  2. BC96.
    A. Boudet and H. Comon. Diophantine equations, Presburger arithmetic and finite automata. In Proceedings of CAAP’96, number 1059 in Lecture Notes in Computer Science, pages 30–43. Springer-Verlag, 1996. 2, 3, 5, 13, 14Google Scholar
  3. BHMV94.
    V. Bruyère, G. Hansel, C. Michaux, and R. Villemaire. Logic and p-recognizable sets of integers. Bulletin of the Belgian Mathematical Society, 1(2):191–238, March 1994. 2, 4MATHMathSciNetGoogle Scholar
  4. Boi98.
    B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD thesis, Université de Liège, 1998. 2, 4Google Scholar
  5. BRW98.
    Bernard Boigelot, Stéphane Rassart, and Pierre Wolper. On the expressiveness of real and integer arithmetic automata. In Proc. 25th Colloq. on Automata, Programming, and Languages (ICALP), volume 1443 of Lecture Notes in Computer Science, pages 152–163. Springer-Verlag, July 1998. 3, 4CrossRefGoogle Scholar
  6. Bry92.
    R.E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Computing Surveys, 24(3):293–318, 1992. 2, 15CrossRefGoogle Scholar
  7. Büc60.
    J. R. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift Math. Logik und Grundlagen der Mathematik, 6:66–92, 1960. 2MATHCrossRefGoogle Scholar
  8. Büc62.
    J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc. Internat. Congr. Logic, Method and Philos. Sci. 1960, pages 1–12, Stanford, 1962. Stanford University Press. 1Google Scholar
  9. BVW94.
    Orna Bernholtz, Moshe Y. Vardi, and Pierre Wolper. An automatatheoretic approach to branching-time model checking. In Computer Aided Verification, Proc. 6th Int. Workshop, volume 818 of Lecture Notes in Computer Science, pages 142–155, Stanford, California, June 1994. Springer-Verlag. 1Google Scholar
  10. BW94.
    Bernard Boigelot and Pierre Wolper. Symbolic verification with periodic sets. In Computer Aided Verification, Proc. 6th Int. Conference, volume 818 of Lecture Notes in Computer Science, pages 55–67, Stanford, California, June 1994. Springer-Verlag. 2Google Scholar
  11. CES86.
    E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Transactions on Programming Languages and Systems, 8(2):244–263, January 1986. 1MATHCrossRefGoogle Scholar
  12. Cob69.
    A. Cobham. On the base-dependence of sets of numbers recognizable by finite automata. Mathematical Systems Theory, 3:186–192, 1969. 2, 3MATHCrossRefMathSciNetGoogle Scholar
  13. DGV99.
    M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata generation for linear temporal logic. In Computer-Aided Verification, Proc. 11th Int. Conference, volume 1633, pages 249–260, July 1999. 2CrossRefMathSciNetGoogle Scholar
  14. EC82.
    E.A. Emerson and E.M. Clarke. Using branching time logic to synthesize synchronization skeletons. Science of Computer Programming, 2:241–266, 1982. 1MATHCrossRefGoogle Scholar
  15. End72.
    H. B. Enderton. A mathematical introduction to logic. Academic Press, 1972. 14Google Scholar
  16. GPVW95.
    Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-the-fly automatic verification of linear temporal logic. In Proc. 15th Work. Protocol Specification, Testing, and Verification, Warsaw, June 1995. North-Holland. 2Google Scholar
  17. HJJ+95.
    Jesper G. Henriksen, Jakob L. Jensen, Michael E. Jørgensen, Nils Klarlund, Robert Paige, Theis Rauhe, and Anders Sandholm. Mona: Monadic secondorder logic in practice. In Ed Brinksma, Rance Cleaveland, Kim Guldstrand Larsen, Tiziana Margaria, and Bernhard Steffen, editors, Tools and Algorithms for the Construction and Analysis of Systems, volume 1019 of Lecture Notes in Computer Science, pages 89–110. Springer-Verlag, 1995. 2, 15Google Scholar
  18. Hol91.
    G. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall International Editions, 1991. 2Google Scholar
  19. Hol97.
    Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering, 23(5):279–295, May 1997. Special Issue: Formal Methods in Software Practice. 2CrossRefMathSciNetGoogle Scholar
  20. LASH.
    The Liège Automata-based Symbolic Handler (LASH). Available at http://www.montefiore.ulg.ac.be/~boigelot/research/lash/. 3, 15
  21. MW84.
    Zohar Manna and Pierre Wolper. Synthesis of communicating processes from temporal logic specifications. ACM Transactions on Programming Languages and Systems, 6(1):68–93, January 1984. 1MATHCrossRefGoogle Scholar
  22. Pug92.
    W. Pugh. A practical algorithm for exact array dependency analysis. Comm. of the ACM, 35(8):102, August 1992. 2CrossRefGoogle Scholar
  23. QS81.
    J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar. In Proc. 5th Int’l Symp. on Programming, volume 137, pages 337–351. Springer-Verlag, Lecture Notes in Computer Science, 1981. 1Google Scholar
  24. Sem77.
    A. L. Semenov. Presburgerness of predicates regular in two number systems. Siberian Mathematical Journal, 18:289–299, 1977. 2, 4MATHCrossRefGoogle Scholar
  25. TRS98.
    R. K. Ranjan T. R. Shiple, J. H. Kukula. A comparison of Presburger engines for EFSM reachability. In Proc. 10th Int. Conf. on Computer Aided Verification, volume 1427 of Lecture Notes in Computer Science, pages 280–292, Vancouver, July 1998. Springer-Verlag. 3CrossRefGoogle Scholar
  26. VW86.
    Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic program verification. In Proceedings of the First Symposium on Logic in Computer Science, pages 322–331, Cambridge, June 1986. 1Google Scholar
  27. VW94.
    Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Information and Computation, 115(1):1–37, November 1994. 1MATHCrossRefMathSciNetGoogle Scholar
  28. WB95.
    Pierre Wolper and Bernard Boigelot. An automata-theoretic approach to Presburger arithmetic constraints. In Proc. Static Analysis Symposium, volume 983 of Lecture Notes in Computer Science, pages 21–32, Glasgow, September 1995. Springer-Verlag. 2, 4Google Scholar
  29. WVS83.
    Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning about infinite computation paths. In Proc. 24th IEEE Symposium on Foundations of Computer Science, pages 185–194, Tucson, 1983. 1Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Pierre Wolper
    • 1
  • Bernard Boigelot
    • 1
  1. 1.Institut Montefiore, B28Université de LiègeLiège Sart-TilmanBelgium

Personalised recommendations