Evolution of Controllers from a High-Level Simulator to a High DOF Robot

  • G. S. Hornby
  • S. Takamura
  • O. Hanagata
  • M. Fujita
  • J. Pollack
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1801)

Abstract

Building a simulator for a robot with many degrees of freedom and various sensors, such as Sony’s AIBO4, is a daunting task. Our implementation does not simulate raw sensor values or actuator commands, rather we model an intermediate software layer which passes processed sensor data to the controller and receives high-level control commands. This allows us to construct a simulator that runs at over 11000 times faster than real time. Using our simulator we evolve a ball-chasing behavior that successfully transfers to an actual AIBO.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Fujita & Kitano, 1998]
    Fujita, M. & Kitano, H. (1998). Development of an autonomous quadruped robot for robot entertainment. Autonomous Robotics, 5:1–14.Google Scholar
  2. [Gallagher & Beer, 1992]
    Gallagher, J. C. & Beer, R. D. (1992). A qualitative dynamical analysis of evolved locomotion controllers. In Meyer, J.-A., Roitblat, H. L., & Wilson, S. W. (Eds.), From Animals to Animats 2, pp. 71–80.Google Scholar
  3. [Gallagher et al., 1996]
    Gallagher, J. C., Beer, R. D., Espenschied, K. S., & Quinn, R. D. (1996). Application of evolved locomotion controllers to a hexapod robot. Robotics and Autonomous Systems, 19(1):95–103.CrossRefGoogle Scholar
  4. [Hornby et al., 1999]
    Hornby, G. S., Fujita, M., Takamura, S., Yamamoto, T., & Hanagata, O. (1999). Autonomous evolution of gaits with the sony quadruped robot. In Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann.Google Scholar
  5. [Hornby & Mirtich, 1999]
    Hornby, G. S. & Mirtich, B. (1999). Diffuse versus true coevolution in a physics-based world. In Banzhaf, Daida, Eiben, Garzon, Honavar, Jakiel, & Smith (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann.Google Scholar
  6. [Jakobi, 1998]
    Jakobi, N. (1998). Minimal Simulations for Evolutionary Robotics. PhD thesis, School of Cognitive and Computing Sciences, University of Sussex.Google Scholar
  7. [Lund & Miglino, 1996]
    Lund, H. H. & Miglino, O. (1996). From simulated to real robots. In Proceedings of IEEE 3rd International Conference on Evolutionary Computation. IEEE Press.Google Scholar
  8. [Michel, 1995]
    Michel, O. (1995). An artificial life approach for the synthesis of autonomous agents. In Alliot, J., Lutton, E., Ronald, E., Schoenauer, M., & Snyers, D. (Eds.), Proceedings of the European Conference on Artificial Evolution, pp. 220–231. Springer-Verlag.Google Scholar
  9. [Miglino et al., 1995]
    Miglino, O., Lund, H., & Nolfi, S. (1995). Evolving mobile robots in simulated and real environments. Artificial Life, 2(4):417–434.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • G. S. Hornby
    • 1
  • S. Takamura
    • 2
  • O. Hanagata
    • 3
  • M. Fujita
    • 3
  • J. Pollack
    • 1
  1. 1.Computer Science Dept.Brandeis UniversityWaltham
  2. 2.ER Business Incubation Dept.Sony CorporationTokyoJapan
  3. 3.Group 1, D-21 LabSony CorporationTokyoJapan

Personalised recommendations