A fuzzy extension of Allen’s Interval Algebra

  • S. Badaloni
  • M. Giacomin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1792)

Abstract

The aim of this work is to integrate the ideas of flexibility and uncertainty into Allen’s interval-based temporal logic [1], defining a new formalism which extends classical Interval Algebra (IA). Some results obtained in the framework of Fuzzy Constraint Satisfaction Problem (FCSP) approach [3] are used in the specific domain of temporal reasoning. A new fuzzy interval algebra IAfuz is defined. Classical concepts of consistency and minimality are generalized to deal with IAfuz. Path-consistency and branch & bound algorithms are shown. A tractable sub-algebra of IAfuz is defined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.F. Allen Maintaining Knowledge about temporal intervals Communication of the ACM, 26(1), pp. 832–843, 1983MATHCrossRefGoogle Scholar
  2. 2.
    C. Da Costa Pereira, F. Garcia, J. Lang, R. Martin-Clouaire Planning with Graded Nondeterministic Actions: A Possibilistic Approach International Journal of Intelligent Systems, Vol. 12, pp. 935–962, 1997CrossRefGoogle Scholar
  3. 3.
    D. Dubois, H. Fargier, H. Prade Possibility Theory in Constraint Satisfaction Problems: Handling Priority, Preference and Uncertainty Applied Intelligence 6, pp. 287–309, 1996CrossRefGoogle Scholar
  4. 4.
    D. Dubois, H. Fargier, H. Prade Fuzzy constraints in job-shop scheduling Journal of intelligent Manufacturing, Vol. 6, pp. 215–235, 1995CrossRefGoogle Scholar
  5. 5.
    D. Dubois, H. Prade Processing Fuzzy Temporal Knowledge IEEE Trans. on Systems, Man and Cybernetics, Vol. 19, no. 4, pp. 729–743, 1989CrossRefMathSciNetGoogle Scholar
  6. 6.
    H. Fargier, J. Lang Uncertainty in constraint satisfaction problems: a probabilistic approach Proceedings of ECSQARU 1993, Granada, pp. 97–104, 1993Google Scholar
  7. 7.
    A. Gerevini, L. Schubert On computing the minimal labels in time point algebra networks Computational Intelligence, 11(3), pp. 443–448, 1995CrossRefMathSciNetGoogle Scholar
  8. 8.
    M. Giacomin Estensione Fuzzy di Reti di Vincoli Temporali Tesi di Laurea dell’ Università di Padova, 1998Google Scholar
  9. 9.
    L. Godo, L. Vila Possibilistic Temporal Reasoning based on Fuzzy Temporal Constraints Research Report 95/09, IIIA-CSIC, 1995Google Scholar
  10. 10.
    E. Guere, R. Alami A Possibilistic Planner that deals with non-determinism and contingency Proceedings of IJCAI 1999, pp.996–1001, 1999Google Scholar
  11. 11.
    B. Nebel, H.J. Burckert Reasoning about temporal relations: a maximal tractable subclass of Allen’s interval algebra Journal of the Association for Computing Machinery, 42(1), pp. 43–66, 1995MATHMathSciNetGoogle Scholar
  12. 12.
    P. van Beek, D.W. Manchak The Design and Experimental Analysis of Algorithms for Temporal Reasoning Journal of Artificial Intelligence Research 4, pp. 1–18, 1996MATHCrossRefGoogle Scholar
  13. 13.
    P. van Beek, R. Cohen Exact and approximate reasoning about temporal relations Computational Intelligence, 6, pp. 132–144, 1990CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • S. Badaloni
    • 1
  • M. Giacomin
    • 2
  1. 1.Dept. of Electronics and Computer SciencePadovaItaly
  2. 2.DEAUniversity of BresciaBresciaItaly

Personalised recommendations