Non-equilibrium Statistical Mechanics of Classical and Quantum Systems

  • D. Kusnezov
  • E. Lutz
  • K. Aoki
Part of the Lecture Notes in Physics book series (LNP, volume 597)


We study the statistical mechanics of classical and quantum systems in non-equilibrium steady states. Emphasis is placed on systems in strong thermal gradients. Various measures and functional forms of observables are presented. The quantum problem is set up using random matrix techniques, which allows for the construction of the master equation. Special solutions are discussed.


Lyapunov Exponent Master Equation Random Matrix Local Equilibrium Langevin Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gibbs-Van Name Papers, Beinecke Rare Book and Manuscript Library, Yale University.Google Scholar
  2. 2.
    W.G. Hoover, Computational Statistical Mechanics (Elsevier, Amsterdam, 1991); P. Gaspard, Chaos, Scattering and Statistical Mechanics, (Cambridge, New York, 1998); J.R. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics, Cambridge Univ. Press (1999); W.G. Hoover, Time Reversibility, Computer Simulation, and Chaos, (World Scientific, Singapore, 1999).Google Scholar
  3. 3.
    K. Aoki, D. Kusnezov, Ann. Phys. 295, 50 (2002).CrossRefzbMATHADSMathSciNetGoogle Scholar
  4. 4.
    K. Aoki, D. Kusnezov, Phys. Lett. B477, 348 (2000).ADSMathSciNetGoogle Scholar
  5. 5.
    K. Aoki, D. Kusnezov, “On the Violations of Local Equilibrium and Linear Response” nlin.CD/0105063.Google Scholar
  6. 6.
    K. Aoki, D. Kusnezov, Phys. Rev. Lett. 86 (2001) 4029.CrossRefADSGoogle Scholar
  7. 7.
    D. Kusnezov, K. Aoki, “Statistical Mechanics of Non-Equilibrium Field Theory: From Transport to Phase Transitions”, in Dynamics of Gauge Fields, Frontiers Science Series No. 33, (Universal Academy Press, Tokyo, 2001).Google Scholar
  8. 8.
    K. Aoki, D. Kusnezov, “Lyapunov Exponents, Transport and the Extensivity of Dimensional Loss”, nlin.CD/0204015.Google Scholar
  9. 9.
    K. Aoki, D. Kusnezov, Phys. Lett., 250 A265 (2000).ADSMathSciNetGoogle Scholar
  10. 10.
    E. M. Lifshits, L.P. Pitaevskii, Physical Kinetics, (Pergamon Press, New York, 1981).Google Scholar
  11. 11.
    G. Marcelli, B.D. Todd and R. Sadus, Phys. Rev. E63 (2001) 021204; J.P.Ryckaert, A.Bellemans, G.Ciccotti, G.V. Paolini, Phys. Rev. Lett. 60, 12 8 (1988); S. Rastogi, N. Wagner and S. Lustig, J. Chem. Phys. 104, 9234 (1996); D. Evans and H.J.M. Hanley, Phys. Lett. 80A, 175 (1980).ADSGoogle Scholar
  12. 12.
    N.I. Chernov, G.L. Eyink, J.L. Lebowitz and Ya.G. Sinai, Phys. Rev. Lett. 70, (1993) 2209.CrossRefADSGoogle Scholar
  13. 13.
    M.L. Mehta, Random Matrices, (Academic, New York, 1991).zbMATHGoogle Scholar
  14. 14.
    T. Guhr, A. Mueller-Groeling and H.A. Weidenmüller, Phys. Rep. 299, 189 (1998).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    C.M. Ko, H.J. Pirner and H.A. Weidenmueller, Phys. Lett. B62, 248 (1976).ADSGoogle Scholar
  16. 16.
    H.A. Weidenmüller, in Progress in Particle and Nuclear Physics Vol.3 (Pergamon, Oxford, 1980).Google Scholar
  17. 17.
    P.A. Mello, P. Peyrera and N. Kumar, J. Stat. Phys. 51, 77 (1988); P. Pereyra, J. Stat. Phys. 65, 773 (1990).CrossRefzbMATHADSGoogle Scholar
  18. 18.
    A. Bulgac. G. Do Dang and D. Kusnezov, Phys. Rev. E54, 3468 (1996).ADSGoogle Scholar
  19. 19.
    E. Lutz and H.A. Weidenmüller, Physica A 267, 354 (1999).Google Scholar
  20. 20.
    D. Kusnezov, A. Bulgac and G. DoDang, Phys. Rev. Lett. 82 (1999) 1136; D. Kusnezov, Czech. J. Phys. 49 (1999) pp.35–87; A. Bulgac, G. DoDang, D. Kusnezov, Phys. Rev. E58 196 (1998); D. Kusnezov, A.Bulgac, G. DoDang, Phys. Lett. 234A (1997) 103.CrossRefADSGoogle Scholar
  21. 21.
    H. Carmichael, An Open System Approach to Quantum Optics, Lectures Notes in Physics m18, (Springer, Berlin, 1993).Google Scholar
  22. 22.
    E. Lutz, Europhys. Lett. 54, 293 (2001).CrossRefADSGoogle Scholar
  23. 23.
    A.O. Caldeira and A.J. Leggett, Physica A121, 587 (1983).ADSMathSciNetGoogle Scholar
  24. 24.
    U. Weiss, Quantum Dissipative Systems, (World Scientific, Singapore, 1999).CrossRefzbMATHGoogle Scholar
  25. 25.
    E. Lutz, Phys. Rev. E64, 51106 (2001).ADSGoogle Scholar
  26. 26.
    A.I Saichev, G.M. Zaslavsky, Chaos 7, 753 (1997); S.G Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications (Gordon and Breach, Amsterdam, 1993)CrossRefzbMATHADSMathSciNetGoogle Scholar
  27. 27.
    A. Erdélyi, Higher Transcendantal Functions. Vol. 3. (McGraw-Hill, New York, 1955).Google Scholar
  28. 28.
    Z. Rieder, J.L. Lebowitz and E. Lieb, J. Math. Phys. 8, 1073 (1967).CrossRefADSGoogle Scholar
  29. 29.
    U. Zürcher and P. Talkner, Phys. Rev. A42, 3267 (1990), 3278 (1990).ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • D. Kusnezov
    • 1
  • E. Lutz
    • 1
  • K. Aoki
    • 2
  1. 1.Center for Theoretical Physics, Sloane Physics LabYale UniversityNew HavenUSA
  2. 2.Dept. of PhysicsKeio UniversityYokohamaJapan

Personalised recommendations