Low Power High Speed Algebraic Integer Frequency Sampling Filters Using FPLDs

  • U. Meyer-Baese
  • J. Ramírez
  • A. García
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2438)


Algebraic integers have been proven beneficial to DFT, DCT, and non-recursive FIR filter designs since algebraic integers can be dense in C, resulting in short-word-width, low power, and high-speed designs. This paper uses another property of algebraic integers; namely, algebraic integers can produce exact pole zero cancellation pairs that are used in recursive complex FIR, frequency sampling filter designs. Design synthesis results for Xilinx and Altera FPLDs are provided.


Quotient Ring Algebraic Integer Residue Number System Gate Count Cyclotomic Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cozzens, J., Finkelstein, L.: Computing the Discrete Fourier Transform Using Residue Number Systems in a Ring of Algebraic Integers. IEEE Transactions on Information Theory, (1985) 580–8Google Scholar
  2. [2]
    Games, R.: Complex Approximations Using Algebraic Integers. IEEE Transactionson Information Theory, (1985) 565–579Google Scholar
  3. [3]
    T. Nagell, Introduction to Number Theory, Chelsea, 1964.Google Scholar
  4. [4]
    E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Vol. 1, Chelsea publishing company, 1953.Google Scholar
  5. [5]
    Marcellin, M., Fischer, T.: Encoding Algorithms for Complex Approximations in Z[e2πi/8]. IEEE Transactions on Information Theory, April (1989) 1133–6.Google Scholar
  6. [6]
    Meyer-Baese, U., Meyer-Baese, A., W. Hilberg, W.: COordinate Rotation DIgital Computer (CORDIC) Synthesis for FPGA. in Lecture Notes in Computer Science, Vol. 849. Springer-Verlag, Berlin Heidelberg New York (1994) 397–408.Google Scholar
  7. [7]
    Meyer-Baese, U.: Digital Signal Processing with Field Programmable Gate Arrays, Springer Verlag, Berlin Heidelberg New York (2001)Google Scholar
  8. [8]
    Meyer-Baese, U., Taylor, F.: Optimal Algebraic Integer Implementation With Applicationto Complex Frequency Sampling Filters. Transactions on C&S II 48 (2001) 2061–2064Google Scholar
  9. [9]
    Hogenauer, E. B.: An Economical Class of Digital Filters for Decimation and Interpolation. IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 29. (1981) 155–162CrossRefGoogle Scholar
  10. [10]
    Meyer-Baese, U., Mellott, J., Taylor, F.: Design of RNS Frequency Sampling Filter Banks. in IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 3. (1997) 2061–2064Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • U. Meyer-Baese
  • J. Ramírez
    • 1
    • 2
  • A. García
    • 2
  1. 1.Department of Electrical and Computer EngineeringFlorida State UniversityTallahassee
  2. 2.Dept. of Electronics and Computer TechnologyUniversity of GranadaGranadaSpain

Personalised recommendations