Advertisement

Semantic Integration and Query Optimization of Heterogeneous Data Sources*

(Invited Paper)
  • Domenico Beneventano
  • Sonia Bergamaschi
  • Silvana Castano
  • Valeria De Antonellis
  • Alfio Ferrara
  • Francesco Guerra
  • Federica Mandreoli
  • Giorgio Carlo Ornetti
  • Maurizio Vincini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2426)

Abstract

In modern Internet/Intranet-based architectures, an increasing number of applications requires an integrated and uniform access to a multitude of heterogeneous and distributed data sources. In this paper, we describe the ARTEMIS/MOMIS system for the semantic integration and query optimization of heterogeneous structured and semistructured data sources.

Keywords

Query Optimization Local Class Base Extension Query Execution Semantic Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Beneventano, S. Bergamaschi, C. Sartori, and M. Vincini. ODBQOPTIMIZER: A tool for semantic query optimization in OODB. In Int. Conf. on Data Engineering-ICDE97, 1997. http://sparc20.dsi.unimo.it.
  2. [2]
    S. Bergamaschi, S. Castano, D. Beneventano, and M. Vincini. Semantic integration of heterogenous information sources. Data and Knowledge Engineering, 36(3):215–249, 2001.zbMATHCrossRefGoogle Scholar
  3. [3]
    S. Castano, V. De Antonellis, and S. De Capitani di Vimercati. Global viewing of heterogeneous data sources. IEEE Transactions on Data and Knowledge Engineering, 13(2), 2001.Google Scholar
  4. [4]
    T. Catarci and M. Lenzerini. Representing and using interschema knowledge in cooperative information systems. Journal of Intelligent and Cooperative Information Systems, 2(4):375–398, 1993.CrossRefGoogle Scholar
  5. [5]
    S. Cluet, P. Veltri, and D. Vodislav. Views in a large scale XML repository. In Proc. of the VLDB 2001, Roma, Italy, 2001.Google Scholar
  6. [6]
    A. Doan, P. Domingos, and A. Halevy. Reconciling schemas of disparate data sources: A machine-learning approach. In Proc. of ACM SIGMOD, Santa Barbara, California, USA, 2001.Google Scholar
  7. [7]
    O. M. Duschka and M. R. Genesereth. Answering recursive queries using views. In Proc. of the Sixteenth ACM SIGMOD Symposium on Principles of Database Systems, 1997.Google Scholar
  8. [8]
    R. Goldman, J. McHugh, and J. Widom. From semistructured data to XML: Migrating the lore data model and query languages. In Proc. of International Workshop on the Web and Databases (WebDB’99), pages 25–30, Philadelphia, Pennsylvania, USA, 1999.Google Scholar
  9. [9]
    R. Hull. Managing semantic heterogeneity in databases: A theoretical perspective. In Proc. of the 16th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS’97), 1997.Google Scholar
  10. [10]
    J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with Cupid. In Proc. of VLDB 2001, Roma, Italy, 2001.Google Scholar
  11. [11]
    R. Pottinger and A. Y. Levy. A scalable algorithm for answering queries using views. In Proc. of VLDB 2000, pages 484–495, Cairo, Egypt, 2000.Google Scholar
  12. [12]
    I. Schmitt and C. Türker. An Incremental Approach to Schema Integration by Refining Extensional Relationships. In Proc. of the ACM CIKM 98, pages 322–330, NewY ork, 1998. ACM Press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Domenico Beneventano
    • 1
  • Sonia Bergamaschi
    • 1
  • Silvana Castano
    • 2
  • Valeria De Antonellis
    • 3
  • Alfio Ferrara
    • 2
  • Francesco Guerra
    • 1
  • Federica Mandreoli
    • 1
  • Giorgio Carlo Ornetti
    • 2
  • Maurizio Vincini
    • 1
  1. 1.Università di Modena e Reggio EmiliaItaly
  2. 2.Università di MilanoItaly
  3. 3.Università di BresciaItaly

Personalised recommendations