On the Computational Power of Neural Microcircuit Models: Pointers to the Literature

  • Wolfgang Maass
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2415)

Abstract

This paper provides references for my invited talk on the computational power of neural microcircuit models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auer, P., Burgsteiner, H., and Maass, W. (2002). Reducing communication for distributed learning in neural networks. In Proc. ICANN’2002. Online available as # 127 on http://www.igi.tugraz.at/maass/publications.html.
  2. 2.
    Buonomano, D.V., and Merzenich, M.M. (1995). Temporal information transformed into spatial code by a neural network with realistic properties. Science 267, 1028–1030.CrossRefGoogle Scholar
  3. 3.
    Braitenberg, V., and Schuez, A. (1998). Cortex: Statistics and Geometry of Neuronal Connectivity, 2nd ed., Springer Verlag, Berlin.Google Scholar
  4. 4.
    Cajal, S. Ramóny (1911). Histologie du systéme nerveux de l’homme et des vertébrés, translated by L. Azoulay. Consejo superior de investigaciones cientificas. Instituto Ramon y Cajal, Madrid, edn. 1972.Google Scholar
  5. 5.
    Douglas, R., and Martin, K. (1998). Neocortex. In The Synaptic Organization of the Brain, G.M. Shepherd, Ed. (Oxford University Press), 459–509.Google Scholar
  6. 6.
    De Felipe, J. (1993). Neocortical neuronal diversity: chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules. Cerebral Cortex 7, 476–486.Google Scholar
  7. 7.
    Gupta, A., Wang, Y., and Markram, H. (2000). Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278.CrossRefGoogle Scholar
  8. 8.
    Gupta, A., Silberberg, G., Toledo-Rodriguez, M., Wu, C.Z., Wang, Y., and Markram, H. (2002). Organizing principles of neocortical microcircuits. Cellular and Molecular Life Sciences, in press.Google Scholar
  9. 9.
    Häusler, S., Markram, H., and Maass, W. (2002). Low dimensional readout from high dimensional neural circuits, submitted for publication. Online available as # 137 on http://www.igi.tugraz.at/maass/publications.html.
  10. 10.
    Hopfield, J.J., and Brody, C.D. (2001). What is a moment? Transient synchrony as a collective mechanism for spatio-temporal integration. Proc. Natl. Acad. Sci., USA, 89(3), 1282.Google Scholar
  11. 11.
    Jaeger, H. (2001). The “echo state” approach to analyzing and training recurrent neural networks, submitted for publication.Google Scholar
  12. 12.
    Legenstein, R.A., Markram, H., and Maass, W. (2002). Input prediction and autonomous movement analysis in recurrent circuits of spiking neurons, submitted for publication. Online available as # 140 on http://www.igi.tugraz.at/maass/publications.html.
  13. 13.
    Maass, W. (1996). Lower bounds for the computational power of networks of spiking neurons. Neural Computation 8(1):1–40. Online available as # 75 on http://www.igi.tugraz.at/maass/publications.html.MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Maass, W. (1997). Fast sigmoidal networks via spiking neurons. Neural Computation 9:279–304. Online available as # 82 on http://www.igi.tugraz.at/maass/publications.html.MATHGoogle Scholar
  15. 15.
    Maass, W., and Markram, H. (2002). On the computational power of recurrent circuits of spiking neurons, submitted for publication. Online available as # 135 on http://www.igi.tugraz.at/maass/publications.html.
  16. 16.
    Maass, W., and Natschläger, T. (1997). Networks of spiking neurons can emulate arbitrary Hopfield nets in temporal coding. Network: Computation in Neural Systems 8(4):355–372. Online available as # 93 on http://www.igi.tugraz.at/maass/publications.html.MATHCrossRefGoogle Scholar
  17. 17.
    Maass, W., Natschläger, T., and Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, in press. Online available as # 130 on http://www.igi.tugraz.at/maass/publications.html.
  18. 18.
    Maass, W., Natschläger, T., and Markram, H. (2002a). Real-time computing with emergent neural microcircuit models, submitted for publication.Google Scholar
  19. 19.
    Markram, H., Ofer, M., Natschläger, T., and Maass, W. (2002) Temporal integration in neocortical microcircuits. Cerebral Cortex, in press. Online available as # 142 on http://www.igi.tugraz.at/maass/publications.html
  20. 20.
    Mountcastle, V.B. (1998). Perceptual Neuroscience: The Cerebral Cortex, Harvard University Press (Cambridge).Google Scholar
  21. 21.
    Natschläger, T., Markram, H., and Maass, W. (2002). Computer models and analysis tools for neural microcircuit models. In A Practical Guide to Neuroscience Databases and Associated Tools, R. Kötter, Ed., Kluver Academic Publishers (Boston), in press.Google Scholar
  22. 22.
    Shepherd, G.M. (1988). A basic circuit for cortical organization. In Perspectives in Memory Research, M. Gazzaniga, Ed., MIT-Press, 93–134.Google Scholar
  23. 23.
    Thomson, A., West, D.C., Wang, Y., and Bannister, A.P. (2002). Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2 to 5 of adult rat and cat neocortex: triple intracellular recordings and biocytin-labelling in vitro. Cerebral Cortex, in press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Wolfgang Maass
    • 1
  1. 1.Institute for Theoretical Computer ScienceTechnische Universität GrazGrazAustria

Personalised recommendations