Advertisement

Finding the Optimal Continuous Model for Discrete Data by Neural Network Interpolation of Fractional Iteration

  • Lars Kindermann
  • Achim Lewandowski
  • Peter Protzel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2415)

Abstract

Given the complete knowledge of the state variables of a dynamical system at fixed intervals, it is possible to construct a mapping, which is a perfect discrete time model of the system. To embed this into a continuum, the translation equation has to be solved for this mapping. However, in general, neither existence nor uniqueness of solutions can be guaranteed, but fractional iterates of the mapping computed by a neural network can provide regularized solutions that exactly comply with the laws of physics for several examples. Here we extend this method to continuous embeddings which represent the true trajectories of the dynamical system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Babbage: Essay towards the Calculus of functions. Phil, trans. Royal Soc. London 105 (1815)389–424CrossRefGoogle Scholar
  2. 2.
    N. H. Abel: Determination d’une function au moyen d’une equation qui ne contient qu’une seule variable. Manuscript 1824, in: Oeuvres compl’etes, Christiania (1881)Google Scholar
  3. 3.
    E. Schröder: Über iterierte Funktionen. Math. Ann. 3 (1871) 296–322CrossRefGoogle Scholar
  4. 4.
    G.H. Hardy, E. Cunningham:Orders of infinity. Cambridge Tracts in Mathematics 12 (1924)Google Scholar
  5. 5.
    H. Kneser: Reelle analytische Lösungen der Gleichung f(f(x)) = e x und verwandter Funktionalgleichungen. J. reine angew. Math. 187 (1950) 56–67MathSciNetGoogle Scholar
  6. 6.
    R. Isaacs: Iterates of fractional Order. Canad J. Math. 2 (1950) 409–416zbMATHMathSciNetGoogle Scholar
  7. 7.
    G. Targonski: An Iteration theoretical approach to the concept of time. Colloques Internationaux du C.N.R.S. 229, Transformations ponctuelles et leurs applications, Toulouse (1973) 259–271Google Scholar
  8. 8.
    M.C. Zdun: Continuous iteration semigroups. Boll. Un. Mat. Ital. 14 A (1977) 65–70MathSciNetGoogle Scholar
  9. 9.
    G. Zimmermann: Über die Existenz iterativer Wurzeln von Abbildungen. Dissertation, Marburg/Lahn (1978)Google Scholar
  10. 10.
    R.E. Rice, B. Schweizer & A. Sklar: When is f(f(z)) = az 2+bz+c for all complex z? Amer. Math. Monthly 87 (1980) 252–263zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    M. Kuczma, B. Choczewski & R. Ger:Iterative Functional Equations. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  12. 12.
    K. Baron & W. Jarczyk: Recent results on functional equations in a single variable, perspectives and open problems. Aequationes Math. 61. (2001), 1–48zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    L. Kindermann: Computing Iterative Roots with Neural Networks. Proc. Fifth Conf. Neural Information Processing, ICONIP (1998) Vol. 2:713–715Google Scholar
  14. 14.
    L. Kindermann & A. Lewandowski:A Comparison of Different Neural Methods for Solving Iterative Roots. Proc. Seventh Int’l Conf. on Neural Information Processing, ICONIP, Taejon (2000) 565–569Google Scholar
  15. 15.
    L. Kindermann & T.P. Trappenberg, Modeling time-varying processes by unfolding the time domain. Proc Int’l Joint Conf. on Neural Networks, IJCNN, Washington DC (1999)Google Scholar
  16. 16.
    L. Kindermann & P. Protzel: Physics without laws-Making exact predictions with data based methods. Proc. Int’l Joint Conf on Neural Networks, Honolulu (2002)Google Scholar
  17. 17.
    L. Kindermann, P. Protzel, F. Schmid & O. Gramckow, (SIEMENS AG): Process and device for determining an intermediate section of a metal strip. International Patent WO9942232 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Lars Kindermann
    • 1
  • Achim Lewandowski
    • 2
  • Peter Protzel
    • 2
  1. 1.RIKEN Brain Science InstituteLab for Mathematical Neuroscience, Wako-shiSaitamaJapan
  2. 2.Dept. of Electrical Engineering and Information TechnologyChemnitz University of TechnologyGermany

Personalised recommendations