Dynamical Neural Schmitt Trigger for Robot Control

  • Martin Hülse
  • Frank Pasemann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2415)


Structure and function of a small but effective neural network controlling the behavior of an autonomous miniatur robot is analyzed. The controller was developed with the help of an evolutionary algorithm, and it uses recurrent connectivity structure allowing non-trivial dynamical effects. The interplay of three different hysteresis elements leading to a skilled behavior of the robot in challenging environments is explicitly discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Braitenberg, V. (1984), Vehicles: Experiments in Synthetic Psychology, MIT Press, Cambridge, MA.Google Scholar
  2. 2.
    Husbands, P., Harvey, I. and Cliff, D. (1993), Analysing recurrent dynamical networks evolved for robot control, Proceedings of the Third IEE International Conference on Artificial Neural Networks (ANN93), pp. 158–162. IEE Press.Google Scholar
  3. 3.
    Mondada, F., Franzi, E., and Ienne, P. (1993), Mobile robots miniturization: a tool for investigation in control algorithms, in: Proceedings of ISER’ 93, Kyoto, October 1993.Google Scholar
  4. 4.
    Nolfi, S., and Floreano, D. (2000), Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines, MIT Press, Cambridge.Google Scholar
  5. 5.
    Pasemann, F. (1993), Dynamics of a single model neuron, International Journal of Bifurcation and Chaos, 2, 271–278.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Pasemann, F. (1995), Characteristics of periodic attractors in neural ring networks, Neural Networks, 8, 421–429.CrossRefGoogle Scholar
  7. 7.
    Pasemann, F. (1998), Evolving neurocontrollers for balancing an inverted pendulum, Network: Computation in Neural Systems, 9, 495–511.zbMATHCrossRefGoogle Scholar
  8. 8.
    Pasemann, F., Steinmetz, U., Hülse, M., and Lara, B. (2001), Robot Control and the Evolution of Modular Neurodynamics, Theory in Biosciences, 120, 311–326.Google Scholar
  9. 9.
    Pfeifer, R., and Scheier, C. (2000), Understanding Intelligence, MIT Press, Cambridge.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Martin Hülse
    • 1
  • Frank Pasemann
    • 1
  1. 1.Schloss BirlinghovenFraunhofer Institute for Autonomous Intelligent Systems (AIS)Sankt AugustinGermany

Personalised recommendations