Multiphase Mesh Partitioning for Parallel Computational Mechanics Codes

  • C. Walshaw
  • M. Cross
  • K. McManus
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2330)

Abstract

We consider the load-balancing problems which arise from parallel scientific codes containing multiple computational phases, or loops over subsets of the data, which are separated by global synchronisation points. We motivate, derive and describe the implementation of an approach which we refer to as the multiphase mesh partitioning strategy to address such issues. The technique is tested on example meshes containing multiple computational phases and it is demonstrated that our method can achieve high quality partitions where a standard mesh partitioning approach fails.

Keywords

graph-partitioning load-balancing parallel multiphysics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Bailey, P. Chow, M. Cross, Y. Fryer, and K. A. Pericleous. Multiphysics Modelling of the Metals Casting Process. Proc. Roy. Soc. London Ser. A, 452:459–486, 1995.Google Scholar
  2. 2.
    A. Basermann, J. Fingberg, G. Lonsdale, B. Maerten, and C. Walshaw. Dynamic Multi-Partitioning for Parallel Finite Element Applications. In E. H. D’Hollander et al., editor, Parallel Computing: Fundamentals & Applications, Proc. Intl. Conf. ParCo’99, Delft, Netherlands, pages 259–266. Imperial College Press, London, 2000.Google Scholar
  3. 3.
    M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems. Theoret. Comput. Sci., 1:237–267, 1976.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning Graphs. In S. Karin, editor, Proc. Supercomputing’ 95, San Diego. ACM Press, New York, NY 10036, 1995.Google Scholar
  5. 5.
    G. Karypis and V. Kumar. Multilevel Algorithms for Multi-Constraint Graph Partitioning. TR 98-019, Dept. Comp. Sci., Univ. Minnesota, Minneapolis, MN 55455, 1998.Google Scholar
  6. 6.
    G. Lonsdale, B. Elsner, J. Clinckemaillie, S. Vlachoutsis, F. de Bruyne, and M. Holzner. Experiences with Industrial Crashworthiness Simulation using the Portable, Message-Passing PAM-CRASH Code. In High-Performance Computing and Networking (Proc. HPCN’95), volume 919 of LNCS, pages 856–862. Springer, Berlin, 1995.CrossRefGoogle Scholar
  7. 7.
    K. McManus, C. Walshaw, M. Cross, and S. P. Johnson. Unstructured Mesh Computational Mechanics on DM Parallel Platforms. Z. Angew. Math. Mech., 76(S4):109–112, 1996.MATHGoogle Scholar
  8. 8.
    C. Walshaw and M. Cross. Mesh Partitioning: a Multilevel Balancing and Refinement Algorithm. SIAM J. Sci. Comput., 22(1):63–80, 2000. (originally published as Univ. Greenwich Tech. Rep. 98/IM/35).MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    C. Walshaw and M. Cross. Parallel Optimisation Algorithms for Multilevel Mesh Partitioning. Parallel Comput., 26(12):1635–1660, 2000. (originally published as Univ. Greenwich Tech. Rep. 99/IM/44).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    C. Walshaw, M. Cross, and K. McManus. Multiphase Mesh Partitioning. Appl. Math. Modelling, 25(2):123–140, 2000. (originally published as Univ. Greenwich Tech. Rep. 99/IM/51).MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • C. Walshaw
    • 1
  • M. Cross
    • 1
  • K. McManus
    • 1
  1. 1.School of Computing and Mathematical SciencesUniversity of Greenwich, Old Royal Naval CollegeGreenwich LondonUK

Personalised recommendations