Towards a Microscopic Traffic Simulation of All of Switzerland

  • Bryan Raney
  • Andreas Voellmy
  • Nurhan Cetin
  • Milenko Vrtic
  • Kai Nagel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2329)


Multi-agent transportation simulations are rule-based. The fact that such simulations do not vectorize means that the recent move to distributed computing architectures results in an explosion of computing capabilities of multi-agent simulations. This paper describes the general modules which are necessary for transportation planning simulations, reports the status of an implementation of such a simulation for all of Switzerland, and gives computational performance numbers.


Traffic Simulation Transportation Planning TRANSIMS parallel computing 


  1. [1]
    Vrtic, M.: Dynamische Umlegung des Strassenverkehrs. IVT Seminar, ETH Zürich, Dec 2001. See
  2. [2]
    Beckman, R.J., Baggerly, K.A., McKay, M.D.: Creating synthetic base-line populations. Transportation Research Part A — Policy and Practice 30 (1996) 415–429CrossRefGoogle Scholar
  3. [3]
    Vaughn, K., Speckman, P., Pas, E.: Generating household activity-travel patterns (HATPs) for synthetic populations (1997)Google Scholar
  4. [4]
    Bowman, J.L.: The day activity schedule approach to travel demand analysis. PhD thesis, Massachusetts Institute of Technology, Boston, MA (1998)Google Scholar
  5. [5]
    Jacob, R.R., Marathe, M.V., Nagel, K.: A computational study of routing algorithms for realistic transportation networks. ACM Journal of Experimental Algorithms 4 (1999)Google Scholar
  6. [6]
    Nagel, K., Stretz, P., Pieck, M., Leckey, S., Donnelly, R., Barrett, C.L.: TRANSIMS traffic flow characteristics. Los Alamos Unclassified Report (LA-UR) 97-3530 (1997)Google Scholar
  7. [7]
    : DYNAMIT/MITSIM (1999) Massachusetts Institute of Technology, Cambridge, Massachusetts. See its.
  8. [8]
    Barrett, C.L., Jacob, R., Marathe, M.V.: Formal language constrained path problems. Los Alamos Unclassified Report (LA-UR) 98-1739, see (1997)
  9. ][9]
    TRANSIMS, TRansportation ANalysis and SIMulation System: (since 1992) See tran-sims.
  10. [10]
    Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. Journal de Physique I France 2 (1992) 2221CrossRefGoogle Scholar
  11. [11]
    Gawron, C.: An iterative algorithm to determine the dynamic user equilibrium in a traffic simulation model. International Journal of Modern Physics C 9 (1998) 393–407CrossRefGoogle Scholar
  12. [12]
    Simon, P.M., Nagel, K.: Simple queueing model applied to the city of Portland. International Journal of Modern Physics C 10 (1999) 941–960CrossRefGoogle Scholar
  13. [13]
    Rickert, M.: Traffic simulation on distributed memory computers. PhD thesis, University of Cologne, Germany (1998) See Scholar
  14. [14]
    Voellmy, A., Vrtic, M., Raney, B., Axhausen, K., Nagel, K.: Status of a TRANSIMS implementation for Switzerland (in preparation)Google Scholar
  15. [15]
    Rickert, M., Nagel, K.: Dynamic traffic assignment on parallel computers in TRANSIMS. Future generation computer systems 17 (2001) 637–648CrossRefGoogle Scholar
  16. [16]
    Nagel, K., Rickert, M.: Parallel implementation of the TRANSIMS micro-simulation. Parallel Computing (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Bryan Raney
    • 1
  • Andreas Voellmy
    • 1
  • Nurhan Cetin
    • 1
  • Milenko Vrtic
    • 2
  • Kai Nagel
    • 1
  1. 1.Dept. of Computer ScienceETH Zentrum IFW B27.1ZürichSwitzerland
  2. 2.Inst. for Transportation Planning IVTETH Hönggerberg HIL F32.3ZürichSwitzerland

Personalised recommendations