Multivariate Stochastic Models of Metocean Fields: Computational Aspects and Applications

  • A. V. Boukhanovsky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2329)


Metocean data fields (atmospheric pressure, wind speed, sea surface and air temperature, sea waves etc.) are multivariate and multidimensional, i.e. have a complex spatial and temporal variability. Only 10–20 years back the environmental databases wholly consisted of the time series (ship observation, sea and coastal monitoring stations, automatic probes and buoys, satellites) in fixed points of spatial regions. For processing of such data the different kinds of software are developed, e.g. [11]. They interprets the information in terms of random values (RV) or time series (TS) models only.


Singular Value Decomposition Mathematical Expectation Multivariate Statistical Analysis Orthogonal Expansion Extreme Wave Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anderson T.W. An introduction to multivariate statistical analysis. John Wiley, NY, 1948.Google Scholar
  2. 2.
    Bartlett M.S. Multivariate analysis. J. Roy. Stat. Soc. Suppl. 9(B), 1947, 176–197.Google Scholar
  3. 3.
    Balacrishnan, Applied functional analysis. NewYork, John Wiley, 1980Google Scholar
  4. 4.
    Bendat J.S., Piersol A.G. Random data. Analysis and measurement procedures. John Wiley, NY, 1989.Google Scholar
  5. 5.
    Brilinger D. Time series. Data analysis and theory. Holt, Renehart and Winston, Inc., New York, 1975.Google Scholar
  6. 6.
    Boukhanovsky A.V., Degtyarev A.B., Rozhkov V.A. Peculiarities of computer simulation and statistical representation of time—spatial metocean fields. LNCS #2073, Springer-Verlag, 2001, pp. 463–472.Google Scholar
  7. 7.
    Boukhanovsky A.V., Ivanov N.E., Makarova A.V. Probabilistic analysis of spatialtemporal metocean fields. Proc. of Reg. Conf “Hydrodinamical methods of weather foreacast and climate investigation”, St.Petersburg, Russia, 19–21 June, 2001 (in press, in Russian).Google Scholar
  8. 8.
    Boukhanovsky A.V., Kokh A.O., Rozhkov V.A., Savchuk O.P., Shaer I.S. Statistical analysis of water masses of Baltic sea. Proc. of GOIN, St.Petersburg, Gymiz, Russia, 2001 (in press, in Russian)Google Scholar
  9. 9.
    Cardone V.J., Cox A.T., Swail V.R. Specification of global wave climate: is this the final answer ?// 6th Int. Workshop on Wave Hindcasting and Forecasting. Monterey, California, November 6–10, p. 211–223Google Scholar
  10. 10.
    Golube G.H., Van Loan C.F. Matrix computations (2nd ed.)., London, John Hopkins University Press, 1989.Google Scholar
  11. 11.
    Gould S.H. Variational methods for eigenvalue problems. University of Toronto Press, 1957.Google Scholar
  12. 12.
    Hamilton G.D. Processing of marine data. JCOMM Technical Report, WMO/TD #150, 1986.Google Scholar
  13. 13.
    Hansen I.S. Long—term 3—D modelling of stratification and nutrient cycling in the Baltic sea. Proc. of III BASYS Annual Science Conf., September 20–22, 1999, pp. 31–39.Google Scholar
  14. 14.
    Hotelling H. Relations between two sets of variables. Biometrika, 28, 1936, pp. 321–377.zbMATHGoogle Scholar
  15. 15.
    Johnson R.A., Wichern D.W. Applied multivariate statistical analysis. Prentice-Hall Internalional, Inc., London, 1992, 642 pp.zbMATHGoogle Scholar
  16. 16.
    Kalnay E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, R. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, R. Jenne, D. Joseph. The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, No 3, March, 1996.Google Scholar
  17. 17.
    Loeve M. Fonctions aleatories de second odre. C.R. Acad. Sci. 220, 1945.Google Scholar
  18. 18.
    Lopatoukhin L.J., Rozhkov V.A., Ryabinin V.E., Swail V.R., Boukhanovsky A.V., Degtyarev A.B. Estimation of extreme wave heights. JCOMM Technical Report, WMO/TD #1041, 2000.Google Scholar
  19. 19.
    Mardia K.V. Kent J.T., Bibby J.M. Multivariate analysis. London, Academia Press Inc., 1979zbMATHGoogle Scholar
  20. 20.
    Ogorodnikov V.A., Prigarin S.M. Numerical modelling of random processes and fields: algorithms and applications. VSP, Utrecht, the Netherlands, 1996, 240 p.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • A. V. Boukhanovsky
    • 1
    • 2
  1. 1.St. Petersburg branchState Oceanographic InstituteRussia
  2. 2.Institute for High Performance Computing and Data BasesSt. PetersburgRussia

Personalised recommendations