A Mesoscopic Approach to Modeling Immunological Memory

  • Y ongle Liu
  • Heather J. Ruskin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2329)


In recent years, the study of immune response behaviour through mathematical and computational models has been the focus of considerable efforts. We propose a mesoscopic model to combine the most useful features of the microscopic and macroscopic approaches, which have been the alternatives to date. Cellular automata and Monte Carlo simulation are used to describe the humoral and T-cell mediated immune response, where the nature of the response induced depends on the polarization of TH1 and TH2 cells. Memory immunity is introduced to our model, so that we can simulate primary and secondary immune response. The high affinity between memory B-cells and antibodies contributes to a quick and intense response to repeated infection. The experiments on PaffB--AB and PaffMB--AB, which control antibody production, explore the different roles of B-cell and memory B-cell in immune response stages. The duration of immunological memory is also studied.


Cellular automata Monte Carlo Humoral T-cell mediated Immune response Immunisation Mesoscopic 


  1. 1.
    Kohler, B., Puzone, R., Seiden, P.E., Celada, F.: A systematic approach to vaccine complexity using an automaton model of the cellular and humoral immune system I. Viral characteristics and polarized response. Vaccine 19 (2001), 862–876CrossRefGoogle Scholar
  2. 2.
    Ortega, N.R.S., Pinheiro, C.F.S., Tome, T., Felicio, J.R.D.: Critical behavior of a probabilistic cellular automaton describing a biological system. Physica A 255 (1998), 189–200CrossRefGoogle Scholar
  3. 3.
    Lagreca, M.C., Almeida, R.M.C., Santos, R.M.Z.: A dynamical model for the immunerepertoire. Physica A 289 (2001), 191–207MATHCrossRefGoogle Scholar
  4. 4.
    Celada, F., Seiden, P.E.: A computer model of cellular interactions in the immune system. Immunology Today 13 (1992), 56–62CrossRefGoogle Scholar
  5. 5.
    Bezzi, M., Celada, F., Ruffo, S., Seiden, P.E.:The transition between immune and disease states in a cellular automaton model of clonal immune response. Physica A 245 (1997), 145–163CrossRefGoogle Scholar
  6. 6.
    Boer, R.J.D., Oprea, M., Antia, R., Murali-krishna, K., Ahmed, R., Perelson, A.S.: Recruitment times, proliferation, and apoptosis rates during the CD8+ T-cell Response to lymphocytic choriomeningitis virus. J. Virology. 75 (2001), 10663–10669CrossRefGoogle Scholar
  7. 7.
    Boer, R.J.D., Segel, L.A., Perelson, A.S.: Pattern formation in one-and two-dimensional shape-space models of the immune system. J. Theor. Biol. 155 (1992), 295–333CrossRefGoogle Scholar
  8. 8.
    Hershberg, U., Louzoun, Y., Atlan, H., Solomon, S.: HIV time hierarchy: winning the war while loosing all the battles. Physica A 289 (2001), 178–190MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Mannion, R., Ruskin, H., Pandey, R.B.: Effect of mutation helper T-cells and viral population: A computer simulation model for HIV. Theor. Biosci. 119 (2000a), 10–19Google Scholar
  10. 10.
    Mannion, R., Ruskin, H., Pandey, R.B.: A Monte Carlo approach to population dynamics of cells in a HIV immune response model. Theor. Biosci. 119 (2000b), 145–155Google Scholar
  11. 11.
    Kougias, C.F., Schulte, J.: Simulating the immune response to the HIV-1 virus with cellular automata. J. Stat. Phys. 60, Nos. 1/2, (1990), 263–273.CrossRefGoogle Scholar
  12. 12.
    Stauffer, D. Pandey, R. B.: Immunologically motivated simulations of cellular automata. Computers in Physics, 6, No. 4, JUL/AUG (1992), 404–410Google Scholar
  13. 13.
    Pandey, R.B., Stauffer, D.: Immune response via interacting three dimensional network of cellular automata. J. Phy. France 50 (1989), 1–10CrossRefGoogle Scholar
  14. 14.
    Pandey, R.B., Stauffer, D.: Metastability with probabilistic cellular automata in an HIV infection. J. Stat. Phys. 61, Nos. 1/2, (1990), 235–240CrossRefGoogle Scholar
  15. 15.
    Mielke, A., Pandey, R.B.: A computer simulation study of cell population in a fuzzy interaction model for mutating HIV. Physica A 251 (1998), 430–438CrossRefGoogle Scholar
  16. 16.
    Pandey, R.B.: Computer simulation of a cellular automata model for the immune response in a retrovirus system. J. Stat. Phys., 54, Nos. 3/4, (1989), 997–1010CrossRefMATHGoogle Scholar
  17. 17.
    Pandey, R.B.: Growth and decay of a cellular population in a multicell immune network. J. Phys. A: Math. Gen. 23 (1990), 4321–4331MATHCrossRefGoogle Scholar
  18. 18.
    Janeway, C.A., Travers, J.P., Walport, M., Capra, J.D.: Immunobiology. Garlan Publishing (1999).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Y ongle Liu
    • 1
  • Heather J. Ruskin
    • 1
  1. 1.School of Computer ApplicationsDublin City UniversityIreland

Personalised recommendations