Advertisement

The ProC/BToolset for the Modelling and Analysis of Process Chains

  • F. Bause
  • H. Beilner
  • M. Fischer
  • P. Kemper
  • M. Völker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2324)

Abstract

This paper presents a toolset for modelling and analysing logistic networks. The toolset includes a graphical user interface accommodating a “Process Chains” view. It supports model analysis by a variety of methods including simulative, algebraic and numerical techniques. An object-based, hierarchical structure helps to keep track of large models. The hierarchy employs the notion of function units which may include subordinate function units, where function units provide services to their environments that are internally accomplished by calling services of subordinate function units. This point of view is very much along the structures found in real world organisations. We describe and analyse a model of a supply chain to demonstrate the capabilities of the toolset.

Keywords

Process Chains E-Business E-Commerce Simulation Queueing Networks Generalised Stochastic Petri Nets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ajmone Marsan G. Balbo G. Conte, S. Donatelli, and G. Franceschinis. Modelling with generalized stochastic Petri nets. Wiley, 1995.Google Scholar
  2. 2.
    A. Arantes, C. Fernandes, A.P. Guedes, and I. Themido. Logistic costs case study-an ABC approach. J. of the Operational Research Society, Vol. 51, pp. 1148–1157, 2000zbMATHGoogle Scholar
  3. 3.
    F. Baskett, K. Chandy, R. Muntz, and F. Palacios. Open, closed and mixed networks of queues with different classes of customers. J. of the ACM, 22(2):248–260, 1975.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    F. Bause, H. Beilner. Intrinsic Problems in Simulation of Logistic Networks. 11th European Simulation Symposium and Exhibition (ESS’99), Simulation in Industry, Erlangen, October 26–28, pp. 193–198, 1999.Google Scholar
  5. 5.
    H. Beilner, J. Mäter, N. Wei\enberg. Towards a performance modelling environment: News on HIT In: Modeling techniques and tools for computer performance evaluation Editors: R. Puigjaner, D. Potier, pp. 57–75, 1989.Google Scholar
  6. 6.
    H. Beilner, J. Mäter, C. Wysocki. The Hierarchical Evaluation Tool HIT In: Short Papers and Tool Descriptions of the 7th InternationalConference on Modelling Techniques and Tools for Computer Performance Evaluation, 1994.Google Scholar
  7. 7.
    G. Bolch, S. Greiner, H. de Meer, S. Trivedi. Queueing Networks and Markov Chains. J. Wiley & Sons, 1998.Google Scholar
  8. 8.
    P. Buchholz, M. Fischer, P. Kemper, and C. Tepper. New features in the APNN toolbox. In P. Kemper (ed), Tools of Aachen 2001 Int. Multiconference on Measurement, Modeling and Evaluation of Computer-Communication Systems, pp. 62–68. Universität Dortmund, Fachbereich Informatik, Forschungsbericht Nr. 760, 2001.Google Scholar
  9. 9.
    P. Buchholz, J.P. Katoen, P. Kemper, and C. Tepper. Model-checking large structured Markov-chains. submitted for publication, 2001.Google Scholar
  10. 10.
    C. Cassandras. Discrete Event Systems: modelling and performance analysis. Irwin, Aksen, 1993.Google Scholar
  11. 11.
    G. Ciardo and A. Miner. SMART: Simulation and Markovian analyzer for reliability and timing. In: Proc. of IEEE Int. Computer Performance and Dependability Symposium. IEEE CS-Press, 1996.Google Scholar
  12. 12.
    S. Donatelli. Superposed Generalized Stochastic Petri nets: definition and efficient solution. In Proc. 15th int. Conf. Application and Theory of Petri nets, Springer, 1994.Google Scholar
  13. 13.
    S. Donatelli and G. Franceschinis The PSR methodology: integrating hardware and software models. In Billington, J. and Reisig, W. (eds.), Application and Theory of Petri Nets 1996, Springer, LNCS 1091, pp. 133–152, 1996.Google Scholar
  14. 14.
    B.R. Haverkort. Approximate Analysis of Networks of PH/PH/1/K Queues: Theory & Tool Support. In: Quantitative Evaluation of Computing and Communication Systems, Editors: H. Beilner, F. Bause, LNCS 977, Springer, pp. 239–253, 1995.CrossRefGoogle Scholar
  15. 15.
    P. Kemper. Numerical analysis of superposed GSPNs. IEEE Transactions on Software Engineering, 22(9):615–628, 1996.CrossRefGoogle Scholar
  16. 16.
    T. Köpp. Visualization of performance and cost measures for logistic systems derived from process chain paradigms. Master’s thesis, Dept. of Computer Science, University of Dortmund, 2001.Google Scholar
  17. 17.
    A. Kuhn. Prozessketten in der Logistik — Entwicklungstrends und Umsetzungsstrategien. Verlag Praxiswissen, Dortmund 1995.Google Scholar
  18. 18.
    A. Kuhn. Prozesskettenmanagement — Erfolgsbeispiele aus der Praxis. Verlag Praxiswissen, Dortmund 1999.Google Scholar
  19. 19.
    D.M. Lambert, M.C. Cooper, and J.D. Pagh. Supply Chain Management: Implementation Issues and Research Opportunities. Int. J. of Logistic Management, 9(2), pp. 1–19, 1998.CrossRefGoogle Scholar
  20. 20.
    A.W. Scheer. ARIS-Modellierungsmethoden. Springer, 1998.Google Scholar
  21. 21.
    Supply-Chain Operations Reference Model, SCOR version 4.0, 2000.Google Scholar
  22. 22.
    Collaborative Research Center 559 “Modelling of Large Logistics Networks”. http://www.sfb559.uni-dortmund.de/eng/index.htm
  23. 23.
    W. J. Stewart. Introduction to the numerical solution of Markov chains. Princeton University Press, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • F. Bause
    • 1
  • H. Beilner
    • 1
  • M. Fischer
    • 1
  • P. Kemper
    • 1
  • M. Völker
    • 1
  1. 1.Fachbereich InformatikUniversität DortmundDortmundGermany

Personalised recommendations