Temporal Probabilistic Concepts from Heterogeneous Data Sequences

  • Sally McClean
  • Bryan Scotney
  • Fiona Palmer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2311)


We consider the problem of characterisation of sequences of heterogeneous symbolic data that arise from a common underlying temporal pattern. The data, which are subject to imprecision and uncertainty, are heterogeneous with respect to classification schemes, where the class values differ between sequences. However, because the sequences relate to the same underlying concept, the mappings between values, which are not known ab initio, may be learned. Such mappings relate local ontologies, in the form of classification schemes, to a global ontology (the underlying pattern). On the basis of these mappings we use maximum likelihood techniques to handle uncertainty in the data and learn local probabilistic concepts represented by individual temporal instances of the sequences. These local concepts are then combined, thus enabling us to learn the overall temporal probabilistic concept that describes the underlying pattern. Such an approach provides an intuitive way of describing the temporal pattern while allowing us to take account of inherent uncertainty using probabilistic semantics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bassett, D.E. Jr., Eisen, M.B., Boguski, M.S.: Gene Expression Informatics-it’s All in Your Mine. Nature genetics supplement 21 (1999) 51–55CrossRefGoogle Scholar
  2. 2.
    Cadez, I., Gaffney, S., Smyth, P.: A General Probabilistic Framework for Clustering Individuals. In: Proc. ACM SIGKDD (2000) 140–149Google Scholar
  3. 3.
    Chen, A.L.P., Tseng, F.S.C.: Evaluating Aggregate Operations over Imprecise Data. IEEE Transactions on Knowledge and Data Engineering 8 (1996) 273–284CrossRefGoogle Scholar
  4. 4.
    Demichiel, L.G.: Resolving Database Incompatibility: An Approach to Performing Relational Operations over Mismatched Domains. IEEE Transactions on Knowledge and Data Engineering 4 (1989) 485–493CrossRefGoogle Scholar
  5. 5.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via the EM Algorithm (with discussion). J. R. Statist. Soc. B 39 (1977) 1–38MATHMathSciNetGoogle Scholar
  6. 6.
    Devaney, M., Ram, A.: Dynamically Adjusting Concepts to Accommodate Changing Contexts. In: Proc. ICML-96 Pre-Conference Workshop on Learning in Context-Sensitive Domains, Bari, Italy (1996)Google Scholar
  7. 7.
    D’haeseleer, P., Wen, X., Fuhrman, S., Somogyi, R.: Mining the Gene Expression Matrix: Inferring Gene Relationships from Large-Scale Gene Expression Data. In: Paton, R.C., Holcombe, M. (eds.): Information Processing in Cells and Tissues. Plenum Publishing (1998) 203–323Google Scholar
  8. 8.
    D’haeseleer, P., Liang S., Somogyi, R.: Gene Expression Data Analysis and Modelling. In: Tutorial at the Pacific Symposium on Biocomputing (1999)Google Scholar
  9. 9.
    Doan, A.H., Domingues, P., Levy, A.: Learning Mappings between Data Schemes. In: Proc. AAAI Workshop on Learning Statistical Models from Relational Data, AAAI’ 00, Austin, Texas, Technical Report WS00006 (2000) 1–6Google Scholar
  10. 10.
    Fisher, D.H.: Knowledge Acquisition via Incremental Conceptual Clustering. Machine Learning 2 (1987) 139–172Google Scholar
  11. 11.
    Fisher, D.: Iterative Optimisation and Simplification of Hierarchical Clusterings. Journal of AI Research 4 (1996) 147–179MATHGoogle Scholar
  12. 12.
    Han, J., Fu, Y., Wang, W., Chiang, J., Gong, W., Koperski, K., Li, D., Lu, Y., Rajan, A., Stefanovic, N., Xia, B., Zaiane O.: DBMiner: A System for Mining Knowledge in Large Relational Databases. In: Simoudis, E., Han, J., Fayyad, U.M. (eds.): Proc. 2nd International Conference on Knowledge Discovery and Data Mining (KDD’96), Portland,Oregon (1996) 250–255Google Scholar
  13. 13.
    Han, J., Fu, Y.: Exploration of the Power of Attribute-oriented Induction in Data Mining. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusay, R. (eds.): Advances in Knowledge Discovery, AAAI Press / The MIT Press (1996) 399–421Google Scholar
  14. 14.
    Harries, M., Horn K., Sammut, C.: Extracting Hidden Context. Machine Learning 32(2) (1998) 101–126MATHGoogle Scholar
  15. 15.
    Harries, M., Horn, K.: Learning Stable Concepts in a Changing World. In: Antoniou, G., Ghose, A., Truczszinski, M. (eds.): Learning and Reasoning with Complex Representations. Lecture Notes in AI, Vol. 1359. Springer-Verlag (1998) 106–122Google Scholar
  16. 16.
    Lim, E.-P., J. Srivastava, Shekher, S.: An Evidential Reasoning Approach to Attribute Value Conflict Resolution in Database Management. IEEE Transactions on Knowledge and Data Engineering 8 (1996) 707–723CrossRefGoogle Scholar
  17. 17.
    Malvestuto, F.M.: The Derivation Problem for Summary Data. In: Proc. ACM-SIGMOD Conference on Management of Data, New York, ACM (1998) 87–96Google Scholar
  18. 18.
    Malvestuto, F.M.: A Universal-Scheme Approach to Statistical Databases containing Homogeneous Summary Tables. ACM Transactions on Database Systems 18 (1993) 678–708CrossRefGoogle Scholar
  19. 19.
    McClean, S.I., Scotney, B.W., Shapcott, C.M.: Aggregation of Imprecise and Uncertain Information for Knowledge Discovery in Databases. In: Proc. 4th International Conference on Knowledge Discovery in Databases (KDD’98) (1998) 269–273Google Scholar
  20. 20.
    McClean, S.I., Scotney, B.W., Shapcott, C.M.: Incorporating Domain Knowledge into Attribute-oriented Data Mining. Journal of Intelligent Systems 6 (2000) 535–548CrossRefGoogle Scholar
  21. 21.
    McClean, S.I., Scotney, B.W., Greer, K.R.C.: Clustering Heterogenous Distributed Databases. In: Kargupta, H., Ghosh, J., Kumar, V. Obradovic, Z. (eds.): Proc. KDD Workshop on Knowledge Discovery from Parallel and Distributed Databases (2000) 20–29Google Scholar
  22. 22.
    McClean, S.I., Scotney, B.W., Shapcott, C.M.: Aggregation of Imprecise and Uncertain Information in Databases. Accepted, IEEE Trans. Knowledge and Data Engineering (2001)Google Scholar
  23. 23.
    Michaels, G.S., Carr, D.B., Askenazi, M., Fuhrman S., Wen, X., Somogyi, R.: Cluster Analysis and Data Visualisation of Large-Scale Gene Expression Data. Pacific Symposium on Biocomputing 3 (1998) 42–53Google Scholar
  24. 24.
    Mitchell, T.: Machine Learning. New York: McGraw Hill (1997)MATHGoogle Scholar
  25. 25.
    Scotney, B.W., McClean, S.I.: Efficient Knowledge Discovery through the Integration of Heterogeneous Data. Information and Software Technology (Special Issue on Knowledge Discovery and Data Mining) 41 (1999) 569–578CrossRefGoogle Scholar
  26. 26.
    Scotney B.W., McClean, S.I, Rodgers, M.C.: Optimal and Efficient Integration of Heterogeneous Summary Tables in a Distributed Database. Data and Knowledge Engineering 29 (1999) 337–350MATHCrossRefGoogle Scholar
  27. 27.
    Talavera, L., Béjar, J.: Generality-based Conceptual Clustering with Probabilistic Concepts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(2) (2001) 196–206CrossRefGoogle Scholar
  28. 28.
    Tseng, F.S.C., Chen, A.L.P., Yang, W-P.: Answering Heterogeneous Database Queries with Degrees of Uncertainty. Distributed and Parallel Databases 1 (1993) 281–302CrossRefGoogle Scholar
  29. 29.
    Vardi, Y., Lee, D.: From Image Deblurring to Optimal Investments: Maximum Likelihood Solutions for Positive Linear Inverse Problems (with discussion). J. R. Statist. Soc. B (1993) 569–612Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Sally McClean
    • 1
  • Bryan Scotney
    • 1
  • Fiona Palmer
    • 1
  1. 1.School of Information and Software EngineeringFaculty of Informatics, University of UlsterColeraineNorthern Ireland

Personalised recommendations