Advertisement

A Vision System for Environment Representation: From Landscapes to Landmarks

  • Rafael Murrieta-Cid
  • Carlos Parra
  • Michel Devy
  • Benjamín Tovar
  • Claudia Esteves
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2313)

Abstract

In this paper a complete strategy for scene modeling from sensory data acquired in a natural environment is defined. This strategy is applied to outdoor mobile robotics and goes from environment recognition to landmark extraction. In this work, environment is understood as a specific kind of landscape, for instance, a prairie, a forest, a desert, etc. A landmark is defined as a remarkable object in the environment. In the context of outdoor mobile robotics a landmark has to be useful to accomplish localization and navigation tasks.

Keywords

Mobile Robot Natural Scene Navigation Task Environment Representation Navigation Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Betg-Brezetz, P. Hébert, R. Chatila, and M. Devy. Uncertain Map Making in Natural Environments. In Proc. IEEE International Conference on Robotics and Automation (ICRA), Minneapolis, USA, April 1996.Google Scholar
  2. 2.
    R. Chatila, J.-P. Laumond, Position Referencing and Consistent World Modeling for Mobile Robots. In Proc IEEE Int. Conf. on Robotics and Automation (ICRA), 1985.Google Scholar
  3. 3.
    M. Devy and C. Parra. 3D Scene Modelling and Curve-based Localization in Natural Environments. In Proc. IEEE International Conference on Robotics and Automation (ICRA), Leuven, Belgium, 1998.Google Scholar
  4. 4.
    P. Fillatreau, M. Devy, and R. Prajoux. Modelling of Unstructured Terrain and Feature Extraction using B-spline Surfaces. In Proc. International Conference on Advanced Robotics (ICAR),Tokyo, Japan, November 1993.Google Scholar
  5. 5.
    M. Hebert, C. Caillas, E. Krotkov, I. Kweon and T. Kanade. Terrain mapping for a roving planetary explorer. In Proc. International Conference on Robotics and Automation (ICRA), Vol 2, may 1989.Google Scholar
  6. 6.
    I.S. Kweon and T. Kanade. Extracting topological features for outdoor mobile robots. In Proc. International Conference on Robotics and Automation (ICRA), Sacramento, USA, may 1991.Google Scholar
  7. 7.
    S. Lacroix, R. Chatila, S. Fleury, M. Herrb and T. Simeon Autonomous navigation in outdoor environment: adaptive approach and experiment In Proc. IEEE International Conference on Robotics and Automation (ICRA), San Diego, USA, may 1994.Google Scholar
  8. 8.
    R. Murrieta-Cid, M. Briot, and N. Vandapel. Landmark identification and tracking in natural environment. In Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Victoria, Canada, 1998.Google Scholar
  9. 9.
    R. Murrieta-Cid, C. Parra, M. Devy and M. Briot. Scene Modelling from 2D and 3D sensory data acquired from natural environments. In Proc. IEEE International Conference on Advanced Robotics (ICAR), Budapest, Hungary, 2001.Google Scholar
  10. 10.
    R. Murrieta-Cid, C. Parra, M. Devy, B. Tovar and C. Esteves. Building multilevel models: From landscapes to landmarks. Submitted to the IEEE International Conference on Robotics and Automation (ICRA2002).Google Scholar
  11. 11.
    C. Parra, R. Murrieta-Cid, M. Devy & M. Briot. 3-D modelling and robot localization from visual and range data in natural scenes.. In Proc. International Conference on Vision Systems (ICVS), Las Palmas, Spain, January 1999.Google Scholar
  12. 12.
    Y. Rubner, C. Tomasi, and L. Guibas. A metric for distributions with applications to image databases. In IEEE International Conference on Computer Vision, Bombay, India, 1998.Google Scholar
  13. 13.
    T.S.C Tan and J. Kittler. Colour texture analysis using colour histogram. I.E.E Proc.-Vis.Image Signal Process., 141(6):403–412, December 1994.Google Scholar
  14. 14.
    M. Unser. Sum and difference histograms for texture classification. I.E.E.E. Transactions on Pattern Analysis and Machine Intelligence, 1986.Google Scholar
  15. 15.
    Strat, T. and Fischler M. Context-Based Vision: Recognizing Objects Using Information from Both 2-D and 3-D Imagery. I.E.E.E. Transactions on Pattern Analysis and Machine Intelligence, 1986 Vol13, Num10, pages 1050–1065, October, 1991.CrossRefGoogle Scholar
  16. 16.
    N. Vandapel, S. Moorehead, W. Whittaker, R. Chatila and R. Murrieta-Cid. Preliminary results on the use of stereo color cameras and laser sensors in Antarctica. In Proc. 6th International Symposium on Experimental Robotics (ISER), Sydney Australia, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Rafael Murrieta-Cid
    • 1
  • Carlos Parra
    • 2
  • Michel Devy
    • 3
  • Benjamín Tovar
    • 1
  • Claudia Esteves
    • 1
  1. 1.ITESM Campus Ciudad de MéxicoTlalpan, México D.F.
  2. 2.Pontificia Universidad JaverianaBogotá D.C.Colombia
  3. 3.Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS-CNRS)Toulouse Cedex 4France

Personalised recommendations